scholarly journals Analysis of the Cracking Mechanism of an Elliptical Bipolar Linear-Shaped Charge Blasting

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bo Wu ◽  
Han Wei ◽  
Shixiang Xu ◽  
Guowang Meng ◽  
Zhen Huang ◽  
...  

This study investigates the cracking mechanism of an elliptical bipolar linear-shaped charge blasting via theoretical analysis, experimentation, and numerical simulation. The results show that in the shaped charge blasting, due to the effect of the shaped jet in the direction of the shaped energy, a certain initial crack length is formed. In the action phase of the stress wave, the energy accumulation direction reduces the load required for crack initiation and propagation. The crack propagation length generated in the energy accumulation direction is greater than the nonenergy accumulation direction. The load value of the initial shock wave in the shaped energy direction is significantly greater, by about 1.64 times than the nonshaped energy direction, and the peak load acting time is earlier than the nonshaped energy direction. A large amount of impact explosion energy is consumed in the area close to the charged energy explosion due to the crushing area, regardless of the charged or noncharged energy direction. In the energy accumulation direction, the shock wave attenuation rate is faster in the near explosion area and the stress wave attenuation rate is slower in the mid and far areas of the explosion. The difference in the explosion load in the mid and far areas is small. In the nonconcentrated direction, owing to the reflected compression wave, the second stress peak appears in the nonconcentrated direction. However, its value is smaller than that of the initial shock wave peak.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jinglin Xu ◽  
Jianqing Liu ◽  
Wenbin Gu ◽  
Xin Liu ◽  
Tao Cao

Comparative experiments were conducted with two different structures to study the mechanism of aluminum foam sandwich attenuating blast shock wave. The sandwich structure is composed of “steel–aluminum foam–steel,” and the mild steel structure is composed of “steel–steel.” In the experiment, the polyvinylidene fluoride transducers were used to directly test the load of stress wave between different interfaces of sandwich and mild steel structures. The strain of back sheet was simultaneously measured using high-precision strain gauge. The accuracy of the test results was verified by Henrych’s formula. Experimental results show that the wave attenuation rate on the mild steel structure is only 11.3%, whereas the wave attenuation rate on the sandwich structure can exceed 90%. The interface effect is clearly a more crucial factor in the wave attenuation. The peak value of back sheet strain in the mild steel structure is much higher than the sandwich structure. The apparent overall “X” crushing band is produced in the aluminum foam core, and scanning electron microscope (SEM) observation clearly shows the collapse of the cell wall. Experiments on the sandwich structure with different aluminum foam densities indicate that increasing the relative density results in increased attenuation capability of the aluminum foam and decreased attenuation capability of the sandwich structure. Experiments on the sandwich structure with different aluminum foam thickness indicate that increasing the thickness results in increased attenuation capability of the aluminum foam and the sandwich structure.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 545
Author(s):  
Xiao Yu ◽  
Li Chen ◽  
Qin fang ◽  
Wuzheng Chen

The stress wave attenuation and energy absorption in the coral sand were respectively investigated. A series of experiments were carried out by using a new methodology with an improved split Hopkinson pressure bar (SHPB). Four types of coral sand, i.e., particle sizes of 1.18–0.60 mm, 0.60–0.30 mm, 0.30–0.15 mm, and 0.15–0.075 mm, were carefully sieved and tested. Significant effects of coral sand on stress wave attenuation and energy absorption were observed. Correlation between stress wave attenuation and energy absorption of coral sand was validated. Conclusions on particle size effect of stress wave attenuation and energy absorption, which support each other, were drawn. There existed a common critical stress zone for coral sand with different particle sizes. When the stress below this zone, sand with small particle sizes attenuates stress wave better and absorb energy more; when the stress beyond this zone, sand with larger particle sizes behave better on stress wave attenuation and energy absorption.


AIAA Journal ◽  
2003 ◽  
Vol 41 (7) ◽  
pp. 1304-1313 ◽  
Author(s):  
Lien C. Yang ◽  
Ian P. H. Do

2014 ◽  
Vol 566 ◽  
pp. 344-349
Author(s):  
M. Nabil Bassim ◽  
S. Boakye-Yiadom ◽  
Manon Bolduc

A set of 18 armour steel plates were stacked on top of each other and subjected to shape charges that went through the plates and created a hole that decreased in diameter as it went through consecutive plates. Afterwards, the plates were examined and the hardness near the hole and away from the hole was taken to determine the effect of the passing of the shaped charge through the plates. Also, specimens from the walls of the holes were taken to determine changes in the microstructure due to the shock wave and the resulting excessive heating from the shape charge. It was observed that the shock wave produced significant changes in the microstructure resulting in the appearance adiabatic shear bands (ASBs). These ASBs persisted in holes in plates placed further down the stack (up to 8thin the stack). More complex microstructural mechanisms are thought to take place as opposed to erosion from the flow of the molten metal through the holes in the plates.


2013 ◽  
Vol 718 ◽  
pp. 507-523 ◽  
Author(s):  
O. Ram ◽  
O. Sadot

AbstractShock wave attenuation by means of rigid porous media is often applied when protective structures are dealt with. The passage of a shock wave through a layer of porous medium is accompanied by diffractions and viscous effects that attenuate and weaken the transmitted shock, thus reducing the load that develops on the target wall that is placed behind the protective layer. In the present study, the parameters governing the pressure build-up on the target wall are experimentally investigated using a shock tube facility. Different porous samples are impinged by normal shock waves of various strengths and the subsequent pressure histories that are developed on the target wall are recorded. In addition, different standoff distances from the target wall are investigated. Assuming that the flow through the porous medium is close to being isentropic enabled us to develop a general constitutive model for predicting the pressure history developed on the target wall. This model can be applied to predict the pressure build-up on the target wall for any pressure history that is imposed on the front face of the porous sample without the need to conduct numerous experiments. Results obtained by other investigators are found to be in very good agreement with the predictions of the presently developed constitutive model.


Sign in / Sign up

Export Citation Format

Share Document