scholarly journals A Novel Crow Swarm Optimization Algorithm (CSO) Coupling Particle Swarm Optimization (PSO) and Crow Search Algorithm (CSA)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ying-Hui Jia ◽  
Jun Qiu ◽  
Zhuang-Zhuang Ma ◽  
Fang-Fang Li

The balance between exploitation and exploration essentially determines the performance of a population-based optimization algorithm, which is also a big challenge in algorithm design. Particle swarm optimization (PSO) has strong ability in exploitation, but is relatively weak in exploration, while crow search algorithm (CSA) is characterized by simplicity and more randomness. This study proposes a new crow swarm optimization algorithm coupling PSO and CSA, which provides the individuals the possibility of exploring the unknown regions under the guidance of another random individual. The proposed CSO algorithm is tested on several benchmark functions, including both unimodal and multimodal problems with different variable dimensions. The performance of the proposed CSO is evaluated by the optimization efficiency, the global search ability, and the robustness to parameter settings, all of which are improved to a great extent compared with either PSO and CSA, as the proposed CSO combines the advantages of PSO in exploitation and that of CSA in exploration, especially for complex high-dimensional problems.

Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Author(s):  
A. Safari ◽  
K. H. Hajikolaei ◽  
H. G. Lemu ◽  
G. G. Wang

Although metaheuristic techniques have recently become popular in optimization, still they are not suitable for computationally expensive real-world problems, specifically when the problems have many input variables. Among these techniques, particle swarm optimization (PSO) is one of the most well-known population-based nature-inspired algorithms which can intelligently search huge spaces of possible arrangements of design variables to solve various complex problems. The candidate solutions and accordingly the required number of evaluated particles, however, dramatically increase with the number of design variables or the dimension of the problem. This study is a major modification to an original PSO for using all previously evaluated points aiming to increase the computational efficiency. For this purpose, a metamodeling methodology appropriate for so-called high-dimensional, expensive, black-box (HEB) problems is used to efficiently generate an approximate function from all particles calculated during the optimization process. Following the metamodel construction, a term named metamodeling acceleration is added to the velocity update formula in the original PSO algorithm using the minimum of the metamodel. The proposed strategy is called the metamodel guided particle swarm optimization (MGPSO) algorithm. The superior performance of the approach is compared with original PSO using several benchmark problems with different numbers of variables. The developed algorithm is then used to optimize the aerodynamic design of a gas turbine compressor blade airfoil as a challenging HEB problem. The simulation results illustrated the MGPSO’s capability to achieve more accurate results with a considerably smaller number of function evaluations.


2013 ◽  
Vol 771 ◽  
pp. 173-177
Author(s):  
Hui Lin Shan ◽  
Yin Sheng Zhang

This paper presents principles of a down-converted mixer for four sub-harmonic and proposes a particle swarm optimization algorithm as a global search algorithm, and the performance equation is used as the assessment of the mixer circuit optimization method. Dielectric substrate adopts Electronic Materials with RF/Duroid 5880 whose dielectric constant is 2.20 and 5mil in thickness. The optimization algorithm can quickly get optimal results. The simulation results show that this mixer achieves higher 1 dB compression point, loss of frequency conversion which is less than 15 dB and good linearity.


Author(s):  
Kanagasabai Lenin

In this work Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm (HGPSOS) has been done for solving the power dispatch problem. Genetic particle swarm optimization problem has been hybridized with Symbiotic organisms search (SOS) algorithm to solve the problem. Genetic particle swarm optimization algorithm is formed by combining the Particle swarm optimization algorithm (PSO) with genetic algorithm (GA).  Symbiotic organisms search algorithm is based on the actions between two different organisms in the ecosystem- mutualism, commensalism and parasitism. Exploration process has been instigated capriciously and every organism specifies a solution with fitness value.  Projected HGPSOS algorithm improves the quality of the search.  Proposed HGPSOS algorithm is tested in IEEE 30, bus test system- power loss minimization, voltage deviation minimization and voltage stability enhancement has been attained.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 275
Author(s):  
Chandrasekhara Reddy T ◽  
Srivani V ◽  
A. Mallikarjuna Reddy ◽  
G. Vishnu Murthy

For minimized t-way test suite generation (t indicates more strength of interaction) recently many meta-heuristic, hybrid and hyper-heuristic algorithms are proposed which includes Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), Cuckoo Search (CS), Harmony Elements Algorithm (HE), Exponential Monte Carlo with counter (EMCQ), Particle Swarm Optimization (PSO), and Choice Function (CF). Although useful strategies are required specific domain knowledge to allow effective tuning before good quality solutions can be obtained. In our proposed technique test cases are optimized by utilizing Improved Cuckoo Algorithm (ICSA). At that point, the advanced experiments are organized or prioritized by utilizing Particle Swarm Optimization algorithm (PSO). The Particle Swarm Optimization and Improved Cuckoo Algorithm (PSOICSA) estimation is a blend of Improved Cuckoo Search Algorithm(ICSA) and Particle Swarm Optimization (PSO). PSOICSA could be utilized to advance the test suite, and coordinate both ICSA and PSO for a superior outcome, when contrasted with their individual execution as far as experiment improvement. 


Author(s):  
P. B. de Moura Oliveira ◽  
E. J. Solteiro Pires

This chapter addresses nature and bio-inspired metaheuristics in the context of conflict detection and resolution problems. An approach is presented for a generalization of a population-based bio-inspired search and optimization algorithm, which is depicted for three of the most well-known and firmly established methods: the genetic algorithm, the particle swarm optimization algorithm and the differential evolution algorithm. This integrated approach to a basic general population-based bio-inspired algorithm is presented for single-objective optimization, multi-objective optimization and many-objective optimization. A revision of these three main bio-inspired algorithms is presented for conflict resolution problems in diverse application areas. A bridge between feedback controller design, genetic algorithm, particle swarm optimization and differential evolution is established using a conflict resolution approach. Finally, some perspectives concerning future trends of more recent bio-inspired meta-heuristics is presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Di Zhou ◽  
Yajun Li ◽  
Bin Jiang ◽  
Jun Wang

Due to its fast convergence and population-based nature, particle swarm optimization (PSO) has been widely applied to address the multiobjective optimization problems (MOPs). However, the classical PSO has been proved to be not a global search algorithm. Therefore, there may exist the problem of not being able to converge to global optima in the multiobjective PSO-based algorithms. In this paper, making full use of the global convergence property of quantum-behaved particle swarm optimization (QPSO), a novel multiobjective QPSO algorithm based on the ring model is proposed. Based on the ring model, the position-update strategy is improved to address MOPs. The employment of a novel communication mechanism between particles effectively slows down the descent speed of the swarm diversity. Moreover, the searching ability is further improved by adjusting the position of local attractor. Experiment results show that the proposed algorithm is highly competitive on both convergence and diversity in solving the MOPs. In addition, the advantage becomes even more obvious with the number of objectives increasing.


Sign in / Sign up

Export Citation Format

Share Document