scholarly journals Study of Vanadium Carbide Structures Based on Ve and Ev-Degree Topological Indices

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdul Rauf ◽  
Saba Maqbool ◽  
Muhammad Naeem ◽  
Adnan Aslam ◽  
Hamideh Aram ◽  
...  

Vanadium is a biologically active product with significant industrial and biological applications. Vanadium is found in a variety of minerals and fossil fuels, the most common of which are sandstones, crude oil, and coal. Topological descriptors are numerical numbers assigned to the molecular structures and have the ability to predict certain of their physical/chemical properties. In this paper, we have studied topological descriptors of vanadium carbide structure based on ev and ve degrees. In particular, we have computed the closed forms of Zagreb, Randic, geometric-arithmetic, and atom-bond connectivity (ABC) indices of vanadium carbide structure based on ev and ve degrees. This kind of study may be useful for understanding the biological and chemical behavior of the structure.

Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 2
Author(s):  
Noé Anes García ◽  
Antonio Luis Marqués Sierra

In recent years, developments made to reduce the consequences generated using petroleum products have been strengthening; therefore, biofuels have become a requirement in different countries worldwide with the objective of reducing not only the high levels of current pollution, but also mitigating the effects generated by global warming. Despite the advances that have been made in the field of research on Jatropha, it is still necessary to carry out more detailed studies aimed at achieving a better use of it, identifying the influence of its physical–chemical properties in terms of quality levels, as well as determining its behavior when mixed with palm oil to achieve a biodiesel with better yields, whose impact will be reflected mainly in the environmental field, helping to mitigate the production of greenhouse gases that are produced by petroleum products. Although currently the biofuels sector has made important advances in research, it is necessary to deepen the physical–chemical analyses both in the production and storage processes of biodiesel, so that in the future it can be fully fulfilled with the energy requirements that are currently only achieved with fossil fuels, so it is necessary to direct this research toward the development of new products with improved characteristics, especially when exposed to prolonged storage times and low temperatures.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 261-269
Author(s):  
Jianzhang Wu ◽  
Mohammad Reza Farahani ◽  
Xiao Yu ◽  
Wei Gao

AbstractIt’s revealed from the earlier researches that many physical-chemical properties depend heavily on the structure of corresponding moleculars. This fact provides us an approach to measure the physical-chemical characteristics of substances and materials. In our article, we report the eccentricity related indices of certain important molecular structures from mathematical standpoint. The eccentricity version indices of nanostar dendrimers are determined and the reverse eccentric connectivity index for V-phenylenic nanotorus is discussed. The conclusions we obtained mainly use the trick of distance computation and mathematical derivation, and the results can be applied in physics engineering.


2019 ◽  
Vol 70 (1) ◽  
pp. 278-282 ◽  
Author(s):  
Diana Puiu ◽  
Mariana Popescu ◽  
Marcela Niculescu ◽  
Luoana Florentina Pascu ◽  
Toma Galaon ◽  
...  

The fate of organochlorine compounds in soil ecosystem is shaped by their physical-chemical properties and by environmental conditions. The high persistence of polychlorobiphenyls (PCBs) in soil is given by a slow degradation which varies from months to years (the half-life of PCB 28 is 10.9 years, and PCB 52, 11.2 years). Due to high lipophilicity, these carcinogenic compounds can be easily uptaken by plants and transferred to the food chain. The widespread use of medicinal plant, Mentha Piperita, in pharmaceutical and food industry represents a risk of contamination and pollution. Through laboratory studies, we worked to identify the chemical behavior in soil and plants of some PCB congeners: 28, 52, 138, 153 and 180). The compounds mobility from soil to the roots and then through plant was monitored for 5 weeks. By optimizing the analytical method the contaminants were determined from soil and plant with good recoveries and with reduced limit of detection, below 0.01 mg/kg. It was reported that usually are uptaken into the plant high chlorinated PCBs like PCB 153 and PCB 180 but this study shows that after 5 weeks of PCB application, the concentration of PCB 28, a trichlorobiphenyl, is increasing. Fortunately, calculating the bioconcentration factor (BCF) of the selected PCBs in roots, it was shown that is similar to BCF of other plants like poplar and zucchini. The obtained value of 0.2 is assessed as being low.


Author(s):  
Ali Ahmad ◽  
Muhammad Ahsan Asim ◽  
Muhammad Faisal Nadeem

Aim and Objective: Metal-organic network (MON) is a special class of molecular compounds comprising of groups or metal ion and carbon-based ligand. These chemical compounds are examined employing one, two- or threedimensional formation of porous ore and subfamilies of polymers. Metal-organic networks are frequently utilized in catalysis for the parting & distillation of different gases and by means of conducting solid or super-capacitor. In various scenarios, the compounds are observed balanced in the procedure of deletion or diluter of the molecule and can be rebuilt with another molecular compound. The physical solidity and mechanical characteristics of the metal-organic network have attained great attention due to the mention properties. This study was undertaken to find the polynomials of MON. Methods: Topological descriptor is a numerical number that is utilized to predict the natural correlation amongst the physico-chemical properties of the molecular structures in their elementary networks. Results: After partitioning the vertices based on their degrees, we calculate different degree-based topological polynomials for two distinct metal-organic networks with an escalating number of layers containing both metals and carbon-based ligand vertices. Conclusion: In the analysis of the metal-organic network, topological descriptors and their polynomials play an important part in modern chemistry. An analysis between the calculated various forms of the polynomials and topological descriptors through the numeric values and their graphs is also comprised.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Gao ◽  
Weifan Wang ◽  
Muhammad Kamran Jamil ◽  
Mohammad Reza Farahani

It is found from the earlier studies that the structure-dependency of totalπ-electron energyEπheavily relies on the sum of squares of the vertex degrees of the molecular graph. Hence, it provides a measure of the branching of the carbon-atom skeleton. In recent years, the sum of squares of the vertex degrees of the molecular graph has been defined as forgotten topological index which reflects the structure-dependency of totalπ-electron energyEπand measures the physical-chemical properties of molecular structures. In this paper, in order to research the structure-dependency of totalπ-electron energyEπ, we present the forgotten topological index of some important molecular structures from mathematical standpoint. The formulations we obtained here use the approach of edge set dividing, and the conclusions can be applied in physics, chemical, material, and pharmaceutical engineering.


2020 ◽  
Vol 13 (5) ◽  
pp. 1260-1269
Author(s):  
Aysun Yurttas Gunes ◽  
Muge Togan ◽  
Musa Demirci ◽  
Ismail Naci Cangul

Graph theory is one of the rising areas in mathematics due to its applications in many areas of science. Amongst several study areas in graph theory, spectral graph theory and topological descriptors are in front rows. These descriptors are widely used in QSPR/QSAR studies in mathematical chemistry. Vertex-semitotal graphs are one of the derived graph classes which are useful in calculating several physico-chemical properties of molecular structures by means of molecular graphs modelling the molecules. In this paper, several topological descriptors of vertex-semitotal graphs are calculated. Some new relations on these values are obtained by means of a recently defined graph invariant called omega invariant.


2006 ◽  
Vol 46 (5) ◽  
pp. 2030-2042 ◽  
Author(s):  
Luca Bernazzani ◽  
Celia Duce ◽  
Alessio Micheli ◽  
Vincenzo Mollica ◽  
Alessandro Sperduti ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 85
Author(s):  
Dunja Zoe Powroschnik ◽  
Emanuel Rangel Spadim ◽  
Humberto Jesus Eufrade-Junior ◽  
Elaine Cristina Leonello ◽  
Saulo Philipe Sebastião Guerra

The use of natural resources as an energy source is a well-studied alternative to fossil fuels. Some studies present bamboo as promising biomass for energy generation, and its transformation into briquettes can be a way to take advantage of its production residues. This study’s objective was to determine the physical and chemical properties of two bamboo ages (two and seven years old) of Bambusa vulgaris species to evaluate biomass quality and its briquettes for energy generation. Regarding the higher heating value, there was no difference between treatments means values, which were 17.8 and 18.2 MJ kg−1 for two and seven years old, respectively, and these values were slightly below those found in the literature for Bambusa spp. The mechanical durability was of low quality for both treatments at the testing conditions, so they are not recommended for briquette production. The proximate analysis results were quite near the literature and reinforce bamboo’s positive qualities for biofuel usage.


2022 ◽  
Author(s):  
Sukolsak Sakshuwong ◽  
Hayley Weir ◽  
Umberto Raucci ◽  
Todd Martinez

Abstract Visualizing 3D molecular structures is crucial to understanding and predicting their chemical behavior. However, static 2D hand-drawn skeletal structures remain the preferred method of chemical communication. Here, we combine cutting-edge technologies in augmented reality (AR), machine learning, and computational chemistry to develop MolAR, a mobile application for visualizing molecules in AR directly from their hand-drawn chemical structures. Users can also visualize any molecule or protein directly from its name or PDB ID, and compute chemical properties in real time via quantum chemistry cloud computing. MolAR provides an easily accessible platform for the scientific community to visualize and interact with 3D molecular structures in an immersive and engaging way.


Sign in / Sign up

Export Citation Format

Share Document