scholarly journals Relationship between High Expression of Kaiso Protein and Poor Prognosis of Lung Cancer and the Regulation Mechanism of Malignant Phenotype of Lung Cancer Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shasha Zhu ◽  
Ning Zhou ◽  
Ning Ding ◽  
Shanshan Li ◽  
Xiaoxing Liu ◽  
...  

In this study, Kaiso was discovered to be a unique member of the POZ-zinc fingers family of transcription factors, which has been implicated in the genesis and progression of cancer. Although there is still some debate, Kaiso is believed to be implicated in the development of human cancer. It should be noted that there is minimal evidence available on the therapeutic relevance of nuclear Kaiso in lung cancer in humans. Histone or DNA modifications that control gene activity outside of the underlying sequence are examples of epigenetic alternations. Epigenetic alterations are heritable but reversible. Human illness, such as lung cancer, is often related to epigenetic dysregulation. In preclinical and clinical studies, epigenetic-targeted therapy has shown significant therapeutic promise for solid tumours and has been used in the treatment of haematological malignancies using different medicines targeting epigenetic regulators. It is important to note that the abnormal activities of Kaiso enzymes in tumour growth are summarised below and the development of inhibitors or medicines targeting epigenetic enzyme regulation is highlighted.

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyu Wang ◽  
Doudou Liu ◽  
Zhiwei Sun ◽  
Ting Ye ◽  
Jingyuan Li ◽  
...  

AbstractIt has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


1991 ◽  
Vol 11 (8) ◽  
pp. 4015-4021
Author(s):  
T P Mäkelä ◽  
J Kere ◽  
R Winqvist ◽  
K Alitalo

Chromosomal abnormalities affecting proto-oncogenes are frequently detected in human cancer. Oncogenes of the myc family are activated in several types of tumors as a result of gene amplification or chromosomal translocation. We have recently found the L-myc gene involved in a gene fusion in small-cell lung cancer (SCLC). This results in a chimeric protein with amino-terminal sequences from a novel gene named rif joined to L-myc. Here we present a preliminary structural characterization of the rlf-L-myc fusion gene, which has been found only in cells with an amplified L-myc gene. In addition, we have used somatic cell hybrids to assign the normal rlf locus to the same chromosome (chromosome 1) on which L-myc resides. Finally, we have been able to establish a physical linkage between rif and L-myc with pulsed-field gel electrophoresis. Our results demonstrate that normal rlf and L-myc genes are separated by less than 800 kb of DNA. Thus, the rlf-L-myc gene fusions are due to similar but not identical intrachromosomal rearrangements at 1p32. The presence of independent genetic lesions that cause the formation of identical chimeric rlf-L-myc proteins suggests a role for the fusion protein in the development of these tumors.


2013 ◽  
Vol 8 (12) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Sumit S Chourasiya ◽  
Eppakayala Sreedhar ◽  
K. Suresh Babu ◽  
Nagula Shankaraiah ◽  
V. Lakshma Nayak ◽  
...  

Bioactivity guided investigation of the DCM: MeOH (1:1) extract from the rhizomes of Alpinia galanga led to the isolation of phenylpropanoids (1–9) and their structures were established by 1H NMR, 13C NMR, IR and LC-MS/MS. These compounds have been evaluated for their in vitro anticancer activity against the human cancer cell lines A549 (lung cancer), Colo-205 (colon cancer), A431 (skin cancer), NCI H460 (lung cancer), PC-3 (prostate cancer), and HT-29 (colon cancer). Compounds 4 and 9 showed potent anticancer activity (ranging from 1.3–19.7 μg/mL) against all the tested cancer cell lines. In addition, an asymmetric synthesis of acetoxychavicol acetate (1) and trans-p-coumaryl alcohol (4) has been accomplished in six steps starting from readily available p-hydroxybenzaldehyde for the first time. Grignard reaction and Sharpless kinetic resolution reactions were utilized as the key steps to install the basic core.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769432 ◽  
Author(s):  
Christophe Deben ◽  
Jolien Van den Bossche ◽  
Nele Van Der Steen ◽  
Filip Lardon ◽  
An Wouters ◽  
...  

The TP53 gene remains the most frequently altered gene in human cancer, of which variants are associated with cancer risk, therapy resistance, and poor prognosis in several tumor types. To determine the true prognostic value of TP53 variants in non–small cell lung cancer, this study conducted further research, particularly focusing on subtype and tumor stage. Therefore, we determined the TP53 status of 97 non–small cell lung cancer adenocarcinoma patients using next generation deep sequencing technology and defined the prognostic value of frequently occurring single nucleotide polymorphisms and mutations in the TP53 gene. Inactivating TP53 mutations acted as a predictor for both worse overall and progression-free survival in stage II–IV patients and patients treated with DNA-damaging (neo)adjuvant therapy. In stage I tumors, the Pro-allele of the TP53 R72P polymorphism acted as a predictor for worse overall survival. In addition, we detected the rare R213R (rs1800372, minor allele frequency: 0.0054) polymorphism in 7.2% of the patients and are the first to show the significant association with TP53 mutations in non–small cell lung cancer adenocarcinoma patients (p = 0.003). In conclusion, Our findings show an important role for TP53 variants as negative predictors for the outcome of non–small cell lung cancer adenocarcinoma patients, especially for TP53 inactivating mutations in advanced stage tumors treated with DNA-damaging agents, and provide the first evidence of the R213R G-allele as possible risk factor for non–small cell lung cancer.


1991 ◽  
Vol 11 (8) ◽  
pp. 4015-4021 ◽  
Author(s):  
T P Mäkelä ◽  
J Kere ◽  
R Winqvist ◽  
K Alitalo

Chromosomal abnormalities affecting proto-oncogenes are frequently detected in human cancer. Oncogenes of the myc family are activated in several types of tumors as a result of gene amplification or chromosomal translocation. We have recently found the L-myc gene involved in a gene fusion in small-cell lung cancer (SCLC). This results in a chimeric protein with amino-terminal sequences from a novel gene named rif joined to L-myc. Here we present a preliminary structural characterization of the rlf-L-myc fusion gene, which has been found only in cells with an amplified L-myc gene. In addition, we have used somatic cell hybrids to assign the normal rlf locus to the same chromosome (chromosome 1) on which L-myc resides. Finally, we have been able to establish a physical linkage between rif and L-myc with pulsed-field gel electrophoresis. Our results demonstrate that normal rlf and L-myc genes are separated by less than 800 kb of DNA. Thus, the rlf-L-myc gene fusions are due to similar but not identical intrachromosomal rearrangements at 1p32. The presence of independent genetic lesions that cause the formation of identical chimeric rlf-L-myc proteins suggests a role for the fusion protein in the development of these tumors.


Sign in / Sign up

Export Citation Format

Share Document