scholarly journals Adaptive Finite-Time Control on SE(3) for Spacecraft Final Proximity Maneuvers with Input Quantization

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Sai Zhang ◽  
Zhen Yang

In this paper, a bounded finite-time control strategy is developed for the final proximity maneuver of spacecraft rendezvous and docking exposed to external disturbance and input quantization. To realize the integrated control for spacecraft final proximity operation, the coupling kinematics and dynamics of attitude and position are modeled by feat of Lie group SE 3 . With a view to improving the convergence rate and reducing the chattering, an adaptive finite-time controller is proposed for the error tracking system with one-step theoretical proof of stability. Meanwhile, the hysteresis logarithmic quantizer is implemented to effectively reduce the frequency of data transmission and the quantization errors are reduced under the proposed controller. The algorithms outlined above are based on an integrated model expressed by SE 3 and denoted by uniform motion states, which can simplify the design progress and improve control precision. Finally, simulations are provided to exhibit the effectiveness and advantages of the designed strategy.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Mingyi Huo ◽  
Xing Huo ◽  
Hamid Reza Karimi ◽  
Jianfei Ni

The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.


Algorithms ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Xiaofu Ji ◽  
Xuehua Liu

The problem of finite-time control for singular linear semi-Markov jump systems (SMJSs) with unknown transition rates is considered in this paper. By designing a new semi-positive definite Lyapunov-like function, state feedback controller design methods are given that allow closed-loop singular linear SMJSs to be regular, impulse-free and stochastically finite-time-stable without external disturbance, and stochastically finite-time bounded with external disturbance. The obtained conditions are expressed by a set of strict matrix inequalities, which can be simplified to a set of linear matrix inequalities by a one dimensional search for a scalar. Two numerical examples are given to illustrate the effectiveness of proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jinglin Hu ◽  
Xiuxia Sun ◽  
Lei He

Signal quantization can reduce communication burden in multiple unmanned aerial vehicle (multi-UAV) system, whereas it brings control challenge to formation tracking of multi-UAV system. This study presents an adaptive finite-time control scheme for formation tracking of multi-UAV system with input quantization. The UAV model contains nonholonomic kinematic model and autopilot model with uncertainties. The nonholonomic states of the UAVs are transformed by a transverse function method. For input quantization, hysteretic quantizers are used to reduce the system chattering and new decomposition is introduced to analyze the quantized signals. Besides, a novel transformation of the control signals is designed to eliminate the quantization effect. Based on the backstepping technique and finite-time Lyapunov stability theory, the adaptive finite-time controller is established for formation tracking of the multi-UAV system. Stability analysis proves that the tracking error can converge to an adjustable small neighborhood of the origin within finite time and all the signals in closed-loop system are semiglobally finite-time bounded. Simulation experiment illustrates that the system can track the reference trajectory and maintain the desired formation shape.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaohui Mo ◽  
Huawei Niu ◽  
Qixun Lan

In this paper, finite-time stabilization problem for a class of nonlinear differential-algebraic systems (NDASs) subject to external disturbance is investigated via a composite control manner. A composite finite-time controller (CFTC) is proposed with a three-stage design procedure. Firstly, based on the adding a power integrator technique, a finite-time control (FTC) law is explicitly designed for the nominal NDAS by only using differential variables. Then, by using homogeneous system theory, a continuous finite-time disturbance observer (CFTDO) is constructed to estimate the disturbance generated by an exogenous system. Finally, a composite controller which consists of a feedforward compensation part based on CFTDO and the obtained FTC law is proposed. Rigorous analysis demonstrates that not only the proposed composite controller can stabilize the NDAS in finite time, but also the proposed control scheme exhibits nominal performance recovery property. Simulation examples are provided to illustrate the effectiveness of the proposed control approach.


2020 ◽  
pp. 106380
Author(s):  
Yong Guo ◽  
Dawei Zhang ◽  
Ai-jun Li ◽  
Shenmin Song ◽  
Chang-qing Wang ◽  
...  

Author(s):  
Jiabo Ren ◽  
Baofang Wang ◽  
Mingjie Cai

This paper studies the problem of finite-time consensus (FTC) for uncertain multiple mechanical systems with unknown backlash nonlinearity and external disturbance. Combining finite-time control technique and graph theory, a distributed adaptive FTC protocol is proposed. Radial basis function neural networks are employed to approximate the unknown functions. If the designed parameters of control algorithms and adaptive laws are appropriately chosen, then it can be proved that the position errors between arbitrary two mechanical systems will converge to a small region of zero in finite time as well as the velocity errors. Finally, the effectiveness of the proposed control scheme is verified by numerical simulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuan Liu ◽  
Guojian Tang ◽  
Yuhang Li ◽  
Hang Li ◽  
Jing Ren ◽  
...  

In this study, we investigated the sliding mode control (SMC) technology for the spacecraft rendezvous maneuver under unknown system parameters and external disturbance. With no knowledge of the mass and inertial matrix of the pursuer spacecraft, an adaptive SMC approach was devised using the hyperbolic tangent function to realize the control objective of reducing the chattering problem. In addition, the finite-time stability of the relative dynamics and the boundedness of the signals in the closed-loop system were derived under proposed method. The effectiveness and advantages of the proposed method were verified through theoretical analysis and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document