scholarly journals Optimizing Locations of Primary Schools in Rural Areas of China

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yulong Chen

Scientific location selection of schools is an important way to optimize the allocation of educational resources, improve the efficiency of operating schools, and realize the balanced development of education, especially in rural areas. Many studies have considered the location of schools, but most have omitted the impact of transportation network conditions and the time cost differences caused by different travel speeds under different road conditions. The object of this study is to minimize the total transportation costs for students, construction costs for new schools, and the construction and upgrading costs for roads on a traffic network with travel time uncertainty indicated by different travel time scenarios. A mixed-integer programming model for this problem was proposed. Furthermore, a hybrid simulated annealing algorithm was used to solve the problem. Finally, a practical case study was used to illustrate the application of the proposed mathematical model. The results showed that the traffic network has an important influence on the optimization location of rural schools, and the improvement of traffic network conditions can greatly reduce the time required for students to travel to school.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250962
Author(s):  
Yulong Chen ◽  
Zhizhu Lai ◽  
Zheng Wang ◽  
Dongyang Yang ◽  
Leying Wu

Many studies have considered the location of rural waste transfer stations, but most have omitted the impact of transportation network conditions. Traffic accessibility must be considered in optimizing the location of rural waste transfer stations, which is an important difference from the location of rural waste transfer stations. On the basis of previous studies, this study will consider the impact of traffic network on the optimization locations of waste transfer station in the rural areas. The objective of this study was to ensure the minimum Euclidean distance between the waste transfer station and the population center is the maximum, minimize the garbage transportation cost of each population center, construction costs for waste transfer stations, construction and upgrade costs for roads on a traffic network. A multi-objective facility location-network design model and an improved multi-objective simulated annealing algorithm was used to solve the problem. A detailed practical case study was used to illustrate the application of the proposed mathematical model. The results show that transportation network plays an important role in facility location optimization, and the improvement of traffic network conditions can greatly reduce waste transportation costs.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877326 ◽  
Author(s):  
Wei Zhong ◽  
Zhicai Juan ◽  
Fang Zong ◽  
Huishuang Su

Integration of urban and rural infrastructure is critical to integrating urban and rural public transport. A public transport hub is an important element of infrastructure, and it is the key facilities that serve as transferring points between cities and towns. The location of hub is related to the convenience of travel for urban and rural residents and the closeness of economic interactions between urban and rural areas. In this article, considering the background of the integration of urban and rural public transport, from the perspective of public transport hubs in urban and central town, a multi-level hub-and-spoke network is designed, and the location of integration of urban and rural public transport hub is determined. Based on the connection associated with central towns and the capacity constraints of hubs and to achieve the minimum total cost, this article proposes a mixed-integer programming model that employs a genetic and tabu search hybrid optimization algorithm to validate and analyze, which used the urban and rural public transport data from a specified area of Shandong province in China. The results indicate that the model can simultaneously determine locations for hubs in cities and central towns while minimizing total cost. The hub capacity constraint significantly influences the location of two-level hubs. The hub capacity constraint in the model can reduce the transportation cost for an entire network and optimize the transportation network. This study on urban and rural public transport hub location in a hub-and-spoke network not only reduces the transportation cost of the network but also completes and supplements the location theory of integration of urban and rural public transport.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2020 ◽  
Vol 12 (3) ◽  
pp. 1131
Author(s):  
Wenliang Zhou ◽  
Xiaorong You ◽  
Wenzhuang Fan

To avoid conflicts among trains at stations and provide passengers with a periodic train timetable to improve service level, this paper mainly focuses on the problem of multi-periodic train timetabling and routing by optimizing the routes of trains at stations and their entering time and leaving time on each chosen arrival–departure track at each visited station. Based on the constructed directed graph, including unidirectional and bidirectional tracks at stations and in sections, a mixed integer linear programming model with the goal of minimizing the total travel time of trains is formulated. Then, a strategy is introduced to reduce the number of constraints for improving the solved efficiency of the model. Finally, the performance, stability and practicability of the proposed method, as well as the impact of some main factors on the model are analyzed by numerous instances on both a constructed railway network and Guang-Zhu inter-city railway; they are solved using the commercial solver WebSphere ILOG CPLEX (International Business Machines Corporation, New York, NY, USA). Experimental results show that integrating multi-periodic train timetabling and routing can be conducive to improving the quality of a train timetable. Hence, good economic and social benefits for high-speed rail can be achieved, thus, further contributing to the sustained development of both high-speed railway systems and society.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 636 ◽  
Author(s):  
Aristotle Ubando ◽  
Isidro Marfori ◽  
Kathleen Aviso ◽  
Raymond Tan

Community-based off-grid polygeneration plants based on micro-hydropower are a practical solution to provide clean energy and other essential utilities for rural areas with access to suitable rivers. Such plants can deliver co-products such as purified water and ice for refrigeration, which can improve standards of living in such remote locations. Although polygeneration gives advantages with respect to system efficiency, the interdependencies of the integrated process units may come as a potential disadvantage, due to susceptibility to cascading failures when one of the system components is partially or completely inoperable. In the case of a micro-hydropower-based polygeneration plant, a drought may reduce electricity output, which can, in turn, reduce the level of utilities available for use by the community. The study proposes a fuzzy mixed-integer linear programming model for the optimal operational adjustment of an off-grid micro-hydropower-based polygeneration plant seeking to maximize the satisfaction levels of the community utility demands, which are represented as fuzzy constraints. Three case studies are considered to demonstrate the developed model. The use of a diesel generator for back-up power is considered as an option to mitigate inoperability during extreme drought conditions.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 266
Author(s):  
Sohye Baek ◽  
Young Hoon Lee ◽  
Seong Hyeon Park

Ambulance diversion (AD) is a common method for reducing crowdedness of emergency departments by diverting ambulance-transported patients to a neighboring hospital. In a multi-hospital system, the AD of one hospital increases the neighboring hospital’s congestion. This should be carefully considered for minimizing patients’ tardiness in the entire multi-hospital system. Therefore, this paper proposes a centralized AD policy based on a rolling-horizon optimization framework. It is an iterative methodology for coping with uncertainty, which first solves the centralized optimization model formulated as a mixed-integer linear programming model at each discretized time, and then moves forward for the time interval reflecting the realized uncertainty. Furthermore, the decentralized optimization, decentralized priority, and No-AD models are presented for practical application, which can also show the impact of using the following three factors: centralization, mathematical model, and AD strategy. The numerical experiments conducted based on the historical data of Seoul, South Korea, for 2017, show that the centralized AD policy outperforms the other three policies by 30%, 37%, and 44%, respectively, and that all three factors contribute to reducing patients’ tardiness. The proposed policy yields an efficient centralized AD management strategy, which can improve the local healthcare system with active coordination between hospitals.


Author(s):  
Qiang Meng ◽  
Shuaian Wang ◽  
Zhiyuan Liu

A model was developed for network design of a shipping service for large-scale intermodal liners that captured essential practical issues, including consistency with current services, slot purchasing, inland and maritime transportation, multiple-type containers, and origin-to-destination transit time. The model used a liner shipping hub-and-spoke network to facilitate laden container routing from one port to another. Laden container routing in the inland transportation network was combined with the maritime network by defining a set of candidate export and import ports. Empty container flow is described on the basis of path flow and leg flow in the inland and maritime networks, respectively. The problem of network design for shipping service of an intermodal liner was formulated as a mixed-integer linear programming model. The proposed model was used to design the shipping services for a global liner shipping company.


Sign in / Sign up

Export Citation Format

Share Document