scholarly journals A Comparative Study of the Multistage Solar Stills with Stacked Stages (MSS-SS)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mfanafuthi Mthandeni Mkhize ◽  
Velaphi Msomi

The current work conducts a comparative study of the waterbed multistage solar still with stacked stages (MSS-SS) and the vapour-based MSS-SS. Various experimental test results obtained from the vapour-based MSS-SS are briefly discussed in comparison with the waterbed MSS-SS reported in the literature. Based on the experimental observations and tests, the stage tray requires no maintenance and upper stages can operate even when the lower stages are nonoperational. About 0.8–41.3% distillate yield dropped from the upper stages when lower stages were exposed to the atmosphere. The upper stages increased their productivity by 7.1–15.4% when the lower stages were shut off completely. The waterbed-based MSS-SS preserves and reuses thermal energy much better even during off sunshine hours than the vapour-based system. The vapour-based MSS-SS is only productive during sunshine hours, and about 97-98% of the distillate is produced during daytime. Furthermore, the vapour based was able to produce 6.3 kg/day on average on the selected days.

Author(s):  
Jason C. Wilkes ◽  
Tim Allison

Numerous papers have investigated the behavior of dry-friction whip and whirl; most of them consider contact between a rotor and stator at a single location. For rotors running on multiple magnetic bearings, air bearings, or bushings, equipment failure may result in rub at more than one location. For these cases, it is important to have an analytical model that characterizes possible regions of two-point contact dry-friction whip and whirl. The current work presents a general model to predict possible whirl regions for multi-contact dry-friction whip and whirl, allowing for an arbitrary phase between contact locations. In theory this method can be applied to more than two contact locations; however, a two-point contact example case is developed and compared to results from an experimental test rig developed to demonstrate multi-contact dry-friction whip and whirl in the current work.


2013 ◽  
Vol 51 (01) ◽  
Author(s):  
B Maasoumy ◽  
B Bremer ◽  
R Raupach ◽  
P Lehmann ◽  
MP Manns ◽  
...  

1992 ◽  
Author(s):  
M. HOLLAND ◽  
P. EGGERS ◽  
S. GUINTO ◽  
R. STEVENSON ◽  
GREGORY COLOMBO

2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Iskendar Iskendar ◽  
Andi Jamaludin ◽  
Paulus Indiyono

This paper describes hydrodynamic model tests of Wing in Surface Effect (WiSE) Craft. These craft  was fitted with  stephull  form in different location on longitudinal flat bottom (stepedhull planning craft) to determine the influences of sticking and porpoising motion performances. These motions are usually occured when the craft start to take-off from water surfaces. The test models with scale of 1 : 7 were comprised of 4 (four) stephull models and 1 (one) non-stephull model  as a comparative study. The hydrodynamic  tests were performed with craft speed of 16 – 32 knots (prototype values) in Towing Tank at UPT. Balai Pengkajian dan Penelitian Hidrodinamika (BPPH), BPPT, Surabaya. The resistance (drag) was measured by dynamo meter and the trim of model (draft changing at fore and aft  of model due to model speed) was measured by trim meter. By knowing the value of model trim, the wetted surface area can be determined. Then, the lift forces were calculated based on these measured values. The model test results were presented on tables and curves.  Test results show that models  with step located far away from center of gravity of the WiSE craft tend to porpoising and sticking condition, except if the step location on the below of these center of gravity. While model without step tends to sticking conditions.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


2021 ◽  
Vol 192 ◽  
pp. 116974
Author(s):  
Jose Miguel Maldonado ◽  
David Verez ◽  
Alvaro de Gracia ◽  
Luisa F. Cabeza

2021 ◽  
Vol 224 ◽  
pp. 55-64
Author(s):  
Mohammed El Hadi Attia ◽  
A. Muthu Manokar ◽  
Abd Elnaby Kabeel ◽  
Zied Driss ◽  
Ravishankar Sathyamurthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document