scholarly journals Recognition for Human Gestures Based on Convolutional Neural Network Using the Off-the-Shelf Wi-Fi Routers

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haixia Yang ◽  
Zhaohui Ji ◽  
Jun Sun ◽  
Fanan Xing ◽  
Yixian Shen ◽  
...  

Human gestures have been considered as one of the important human-computer interaction modes. With the fast development of wireless technology in urban Internet of Things (IoT) environment, Wi-Fi can not only provide the function of high-speed network communication but also has great development potential in the field of environmental perception. This paper proposes a gesture recognition system based on the channel state information (CSI) within the physical layer of Wi-Fi transmission. To solve the problems of noise interference and phase offset in the CSI, we adopt a model based on CSI quotient. Then, the amplitude and phase curves of CSI are smoothed using Savitzky-Golay filter, and the one-dimensional convolutional neural network (1D-CNN) is used to extract the gesture features. Then, the support vector machine (SVM) classifier is adopted to recognize the gestures. The experimental results have shown that our system can achieve a recognition rate of about 90% for three common gestures, including pushing forward, left stroke, and waving. Meanwhile, the effects of different human orientation and model parameters on the recognition results are analyzed as well.

2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Author(s):  
Nitin Sharma ◽  
Pawan Kumar Dahiya ◽  
Baldev Raj Marwah

: Automatic licence plate recognition systems are used for various applications such as traffic monitoring, toll collection, car parking, law enforcement. In this paper, a convolutional neural network and support vector machine based automatic licence plate recognition system is proposed. Firstly, The characters extracts from the input image of vehicle. Then characters are segment and their features are extracts. The extracted features are classified using convolutional neural network and support vector machine for the final recognition of the licence plate. The obtained recognition rate by the hybridization of the convolutional neural network and the support vector machine is 96.5%. The recognition rate obtained for the proposed hybrid automatic licence plate system are compared with three other automatic licence plate systems based on neural network, support vector machine, and convolutional neural network. The proposed automatic licence plate recognition system perform better than the neural network, support vector machine, and convolutional nerural network based automatic licence plate recognition systems.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 540 ◽  
Author(s):  
Qiang Guo ◽  
Xin Yu ◽  
Guoqing Ruan

Low Probability of Intercept (LPI) radar waveform recognition is not only an important branch of the electronic reconnaissance field, but also an important means to obtain non-cooperative radar information. To solve the problems of LPI radar waveform recognition rate, difficult feature extraction and large number of samples needed, an automatic classification and recognition system based on Choi-Williams distribution (CWD) and depth convolution neural network migration learning is proposed in this paper. First, the system performs CWD time-frequency transform on the LPI radar waveform to obtain a 2-D time-frequency image. Then the system preprocesses the original time-frequency image. In addition, then the system sends the pre-processed image to the pre-training model (Inception-v3 or ResNet-152) of the deep convolution network for feature extraction. Finally, the extracted features are sent to a Support Vector Machine (SVM) classifier to realize offline training and online recognition of radar waveforms. The simulation results show that the overall recognition rate of the eight LPI radar signals (LFM, BPSK, Costas, Frank, and T1–T4) of the ResNet-152-SVM system reaches 97.8%, and the overall recognition rate of the Inception-v3-SVM system reaches 96.2% when the SNR is −2 dB.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yung-Hui Li ◽  
Nai-Ning Yeh ◽  
Shih-Jen Chen ◽  
Yu-Chien Chung

Diabetic retinopathy (DR) is a complication of long-standing diabetes, which is hard to detect in its early stage because it only shows a few symptoms. Nowadays, the diagnosis of DR usually requires taking digital fundus images, as well as images using optical coherence tomography (OCT). Since OCT equipment is very expensive, it will benefit both the patients and the ophthalmologists if an accurate diagnosis can be made, based solely on reading digital fundus images. In the paper, we present a novel algorithm based on deep convolutional neural network (DCNN). Unlike the traditional DCNN approach, we replace the commonly used max-pooling layers with fractional max-pooling. Two of these DCNNs with a different number of layers are trained to derive more discriminative features for classification. After combining features from metadata of the image and DCNNs, we train a support vector machine (SVM) classifier to learn the underlying boundary of distributions of each class. For the experiments, we used the publicly available DR detection database provided by Kaggle. We used 34,124 training images and 1,000 validation images to build our model and tested with 53,572 testing images. The proposed DR classifier classifies the stages of DR into five categories, labeled with an integer ranging between zero and four. The experimental results show that the proposed method can achieve a recognition rate up to 86.17%, which is higher than previously reported in the literature. In addition to designing a machine learning algorithm, we also develop an app called “Deep Retina.” Equipped with a handheld ophthalmoscope, the average person can take fundus images by themselves and obtain an immediate result, calculated by our algorithm. It is beneficial for home care, remote medical care, and self-examination.


Author(s):  
Sumit S. Lad ◽  
◽  
Amol C. Adamuthe

Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Automatic Signature Verification system is used to verify whether a signature is genuine or forged. Forged Signatures are those signatures that a person produced by imitating the signature of another person. Automatic Signature Verification is very important as a person’s handwritten signature is used everywhere to authenticate themselves and there is not very much difference between a genuine signature and the imitation of it, i.e. a forged signature. In this work, signature verification is done using different pre-trained Convolutional Neural Networks (CNNs). Convolutional Neural Network has powerful learning ability, and it can be used to distinguish between a genuine and a forged signature automatically. In this experiment, Manipuri signature dataset was used, the dataset was prepared originally and it contains 729 genuine signatures and 243 forged signatures. Features were extracted from pre-trained networks and classification was done using binary Support Vector Machine (SVM) classifier and the performances of the networks were compared. And according to the experiment we achieved a classification accuracy of 84.7 using VGG19 features, accuracy of 86.8 using VGG16 features and accuracy of 81.9 using Alexnet features.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xueyan Chen ◽  
Xiaofei Zhong

In order to help pathologists quickly locate the lesion area, improve the diagnostic efficiency, and reduce missed diagnosis, a convolutional neural network algorithm for the optimization of emergency nursing rescue efficiency of critical patients was proposed. Specifically, three convolution layers and convolution kernels of different sizes are used to extract the features of patients’ posture behavior, and the classifier of patients’ posture behavior recognition system is used to learn the feature information by capturing the nonlinear relationship between the features to achieve accurate classification. By testing the accuracy of patient posture behavior feature extraction, the recognition rate of a certain action, and the average recognition rate of all actions in the patient body behavior recognition system, it is proved that the convolution neural network algorithm can greatly improve the efficiency of emergency nursing. The algorithm is applied to the patient posture behavior detection system, so as to realize the identification and monitoring of patients and improve the level of intelligent medical care. Finally, the open source framework platform is used to test the patient behavior detection system. The experimental results show that the larger the test data set is, the higher the accuracy of patient posture behavior feature extraction is, and the average recognition rate of patient posture behavior category is 97.6%, thus verifying the effectiveness and correctness of the system, to prove that the convolutional neural network algorithm has a very large improvement of emergency nursing rescue efficiency.


2020 ◽  
Vol 10 (7) ◽  
pp. 1746-1753
Author(s):  
Lan Liu ◽  
Xiankun Sun ◽  
Chengfan Li ◽  
Yongmei Lei

Conventional methods of medical text data classification, neglect of context among different words and semantic information, has a poor text description, classification effect and generalization capability and robustness. To tackle the inefficiencies and low precision in the classification of medical text data, in this paper, we presented a new classification method with improved convolutional neural network (CNN) and support vector machine (SVM), i.e., CNN-SVM method. In the method, some convolution kernel filters that contribute greatly to the CNN model are first selected by the average response energy (ARE) value, and then used to simplify and reconstruct the CNN model. Next, the SVM classifier was optimized by firefly algorithm (FA) and context information to overcome the disadvantages of over-saturation and over-training in SVM classification. Finally, the presented CNN-SVM method is tested by the simulation experiment and the true classification of medical text data. The experimental results show that the presented CNN-SVM method in this paper can significantly reduce the complexity and amount of computation compared to the conventional methods, and further promote the computational efficiency and classification accuracy of medical text data.


2021 ◽  
Vol 11 (3) ◽  
pp. 836-845
Author(s):  
Xiangsheng Zhang ◽  
Feng Pan ◽  
Leyuan Zhou

The diagnosis of brain diseases based on magnetic resonance imaging (MRI) is a mainstream practice. In the course of practical treatment, medical personnel observe and analyze the changes in the size, position, and shape of various brain tissues in the brain MRI image, thereby judging whether the brain tissue has been diseased, and formulating the corresponding medical plan. The conclusion drawn after observing the image will be influenced by the subjective experience of the experts and is not objective. Therefore, it has become necessary to try to avoid subjective factors interfering with the diagnosis. This paper proposes an intelligent diagnosis model based on improved deep convolutional neural network (IDCNN). This model introduces integrated support vector machine (SVM) into IDCNN. During image segmentation, if IDCNN has problems such as irrational layer settings, too many parameters, etc., it will make its segmentation accuracy low. This study made a slight adjustment to the structure of IDCNN. First, adjust the number of convolution layers and down-sampling layers in the DCNN network structure, adjust the network’s activation function, and optimize the parameters to improve IDCNN’s non-linear expression ability. Then, use the integrated SVM classifier to replace the original Softmax classifier in IDCNN to improve its classification ability. The simulation experiment results tell that compared with the model before improvement and other classic classifiers, IDCNN improves segmentation results and promote the intelligent diagnosis of brain tissue.


Sign in / Sign up

Export Citation Format

Share Document