scholarly journals Research on Music Emotion Intelligent Recognition and Classification Algorithm in Music Performance System

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chun Huang ◽  
Diao Shen

The music performance system works by identifying the emotional elements of music to control the lighting changes. However, if there is a recognition error, a good stage effect will not be able to create. Therefore, this paper proposes an intelligent music emotion recognition and classification algorithm in the music performance system. The first part of the algorithm is to analyze the emotional features of music, including acoustic features, melody features, and audio features. Then, the three kinds of features are combined together to form a feature vector set. In the latter part of the algorithm, it divides the feature vector set into training samples and test samples. The training samples are trained by using recognition and classification model based on the neural network. And then, the testing samples are input into the trained model, which is aiming to realize the intelligent recognition and classification of music emotion. The result shows that the kappa coefficient k values calculated by the proposed algorithm are greater than 0.75, which indicates that the recognition and classification results are consistent with the actual results, and the accuracy of recognition and classification is high. So, the research purpose is achieved.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Daliang Wang ◽  
Xiaowen Guo

In the complex system of music performance, there are differences in the expression of music emotions by listeners, so it is of great significance to study the classification of different emotions under different audio signals. In this paper, the research of human emotional intelligence recognition and classification algorithm in the complex system of music performance is proposed. Through the recognition of SVM, KNN, ANN, and ID3 classifiers, the accuracy of a single classifier is compared, and then the four classifiers are combined to compare the classification accuracy of audio signals before and after preprocessing. The results show that the accuracy of SVM and ANN fusion is the highest. Finally, recall and F1 are comprehensively compared in the fusion algorithm, and the fusion classification effect of SVM and ANN is better than that of the algorithm model.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhao Yu

The work of music performance system is to control the light change by identifying the emotional elements of music. Therefore, once the identification error occurs, it will not be able to create a good stage effect. Therefore, a multimodal music emotion recognition method based on image sequence is studied. The emotional characteristics of music are analyzed, including acoustic characteristics, melody characteristics, and audio characteristics, and the feature vector is constructed. The recognition and classification model based on neural network is trained, the weight and threshold of each layer are adjusted, and then the feature vector is input into the trained model to realize the intelligent recognition and classification of multimodal music emotion. The threshold of the starting point range of a specific humming note is given by the center clipping method, which is used to eliminate the low amplitude part of the humming note signal, extract the short-time spectral structure features and envelope features of the pitch, and complete the multimodal music emotion recognition. The results show that the calculated kappa coefficient k is greater than 0.75, which shows that the recognition and classification results are in good agreement with the actual results, and the classification and recognition accuracy is high.


Author(s):  
Baichen Jiang ◽  
Wei Zhou ◽  
Jian Guan ◽  
Jialong Jin

Classifying the motion pattern of marine targets is of important significance to promote target surveillance and management efficiency of marine area and to guarantee sea route safety. This paper proposes a moving target classification algorithm model based on channel extraction-segmentation-LCSCA-lp norm minimization. The algorithm firstly analyzes the entire distribution of channels in specific region, and defines the categories of potential ship motion patterns; on this basis, through secondary segmentation processing method, it obtains several line segment trajectories as training sample sets, to improve the accuracy of classification algorithm; then, it further uses the Leastsquares Cubic Spline Curves Approximation (LCSCA) technology to represent the training sample sets, and builds a motion pattern classification sample dictionary; finally, it uses lp norm minimized sparse representation classification model to realize the classification of motion patterns. The verification experiment based on real spatial-temporal trajectory dataset indicates that, this method can effectively realize the motion pattern classification of marine targets, and shows better time performance and classification accuracy than other representative classification methods.


2021 ◽  
Vol 11 (18) ◽  
pp. 8676
Author(s):  
Kwangsub Song ◽  
Sangui Choi ◽  
Hooman Lee

In this paper, we propose the long–short-term memory (LSTM)-based voluntary and non-voluntary (VNV) muscle contraction classification algorithm in an electrical stimulation (ES) environment. In order to measure the muscle quality (MQ), we employ the non-voluntary muscle contraction signal, which occurs by the ES. However, if patient movement, such as voluntary muscle contractionm, occurs during the ES, the electromyography (EMG) sensor captures the VNV muscle contraction signals. In addition, the voluntary muscle contraction signal is a noise component in the MQ measurement technique, which uses only non-voluntary muscle contraction signals. For this reason, we need the VNV muscle contraction classification algorithm to classify the mixed EMG signal. In addition, when recording EMG while using the ES, the EMG signal is significantly contaminated due to the ES signal. Therefore, after we suppress the artifact noise, which is contained in the EMG signal, we perform VNV muscle contraction classification. For this, we first eliminate the artifact noise signal using the ES suppression algorithm. Then, we extract the feature vector, and then the feature vector is reconstructed through the feature selection process. Finally, we design the LSTM-based classification model and compare the proposed algorithm with the conventional method using the EMG data. In addition, to verify the performance of the proposed algorithm, we quantitatively compared results in terms of the confusion matrix and total accuracy. As a result, the performance of the proposed algorithm was higher than that of the conventional methods, including the support vector machine (SVM), artificial neural network (ANN), and deep neural network (DNN).


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Yerin Lee ◽  
Soyoung Lim ◽  
Il-Youp Kwak

Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). This presents the solution to Task 1 of the DCASE 2020 challenge submitted by the Chung-Ang University team. Task 1 addressed two challenges that ASC faces in real-world applications. One is that the audio recorded using different recording devices should be classified in general, and the other is that the model used should have low-complexity. We proposed two models to overcome the aforementioned problems. First, a more general classification model was proposed by combining the harmonic-percussive source separation (HPSS) and deltas-deltadeltas features with four different models. Second, using the same feature, depthwise separable convolution was applied to the Convolutional layer to develop a low-complexity model. Moreover, using gradient-weight class activation mapping (Grad-CAM), we investigated what part of the feature our model sees and identifies. Our proposed system ranked 9th and 7th in the competition for these two subtasks, respectively.


Sign in / Sign up

Export Citation Format

Share Document