scholarly journals Growth Stages Classification of Potato Crop Based on Analysis of Spectral Response and Variables Optimization

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 393
Author(s):  
Peng Wang ◽  
Jiang Liu ◽  
Lijia Xu ◽  
Peng Huang ◽  
Xiong Luo ◽  
...  

The accurate classification of Amanita is helpful to its research on biological control and medical value, and it can also prevent mushroom poisoning incidents. In this paper, we constructed the Bilinear convolutional neural networks (B-CNN) with attention mechanism model based on transfer learning to realize the classification of Amanita. When the model is trained, the weight on ImageNet is used for pre-training, and the Adam optimizer is used to update network parameters. In the test process, images of Amanita at different growth stages were used to further test the generalization ability of the model. After comparing our model with other models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (95.2%) and has good generalization ability. It is an efficient classification model, which provides a new option for mushroom classification in areas with limited computing resources.


Author(s):  
S. Paul ◽  
D. N. Kumar

<p><strong>Abstract.</strong> Classification of crops is very important to study different growth stages and forecast yield. Remote sensing data plays a significant role in crop identification and condition assessment over a large spatial scale. Importance of Normalized Difference Indices (NDIs) along with surface reflectances of remotely sensed spectral bands have been evaluated for classification of eight types of Rabi crops utilizing the Landsat-8 and Sentinel-2 datasets and performances of both the satellites are compared. Landsat-8 and Sentinel-2A images are acquired for the location of crops and seven and nine spectral bands are utilized respectively for the classification. Experiments are carried out considering the different combinations of surface reflectances of spectral bands and optimal NDIs as features in support vector machine classifier. Optimal NDIs are selected from the set of <sup>7</sup>C<sub>2</sub> and <sup>9</sup>C<sub>2</sub> NDIs of Landsat-8 and Sentinel-2A datasets respectively using the partial informational correlation measure, a nonparametric feature selection approach. Few important vegetation indices (e.g. enhanced vegetation index) are also experimented in combination with the surface reflectances and NDIs to perform the crop classification. It has been observed that combination of surface reflectances and optimal NDIs can classify the crops more efficiently. The average overall accuracy of 80.96% and 88.16% are achieved using the Landsat-8 and Sentinel-2A datasets respectively. It has been observed that all the crop classes except Paddy and Cotton achieve producer accuracy and user accuracy of more than 75% and 85% respectively. This technique can be implemented for crop identification with adequate accessibility of crop information.</p>


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2504
Author(s):  
Marlies Lauwers ◽  
Benny De Cauwer ◽  
David Nuyttens ◽  
Simon R. Cool ◽  
Jan G. Pieters

Cyperus esculentus (yellow nutsedge) is one of the world’s worst weeds as it can cause great damage to crops and crop production. To eradicate C. esculentus, early detection is key—a challenging task as it is often confused with other Cyperaceae and displays wide genetic variability. In this study, the objective was to classify C. esculentus clones and morphologically similar weeds. Hyperspectral reflectance between 500 and 800 nm was tested as a measure to discriminate between (I) C. esculentus and morphologically similar Cyperaceae weeds, and between (II) different clonal populations of C. esculentus using three classification models: random forest (RF), regularized logistic regression (RLR) and partial least squares–discriminant analysis (PLS–DA). RLR performed better than RF and PLS–DA, and was able to adequately classify the samples. The possibility of creating an affordable multispectral sensing tool, for precise in-field recognition of C. esculentus plants based on fewer spectral bands, was tested. Results of this study were compared against simulated results from a commercially available multispectral camera with four spectral bands. The model created with customized bands performed almost equally well as the original PLS–DA or RLR model, and much better than the model describing multispectral image data from a commercially available camera. These results open up the opportunity to develop a dedicated robust tool for C. esculentus recognition based on four spectral bands and an appropriate classification model.


2004 ◽  
Vol 142 (5) ◽  
pp. 517-524 ◽  
Author(s):  
F. GATIUS ◽  
J. LLOVERAS ◽  
J. FERRAN ◽  
J. PUY

Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples: all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 318
Author(s):  
Mingbang Zhu ◽  
Shanshan Liu ◽  
Ziqing Xia ◽  
Guangxing Wang ◽  
Yueming Hu ◽  
...  

Rapid and accurate evaluation of cultivated land quality (CLQ) using remotely sensed images plays an important role for national food security and social stability. Current approaches for evaluating CLQ do not consider spectral response relationships between CLQ and spectral indicators based on crop growth stages. This study aimed to propose an accurate spectral model to evaluate CLQ based on late rice phenology. In order to increase the accuracy of evaluation, the Empirical Bayes Kriging (EBK) interpolation was first performed to scale down gross primary production (GPP) products from a 500 m spatial resolution to 30 m. As an indicator, the ability of MODIS-GPPs from critical growth stages (tillering, jointing, heading, and maturity stages) was then investigated by combining Pearson correlation analysis and variance inflation factor (VIF) to select the phases of CLQ evaluation. Finally, a linear Partial Least Squares Regression (PLSR) and two nonlinear models, including Support Vector Regression (SVR) and Genetic Algorithm-Based Back Propagation Neural Network (GA-BPNN), were driven to develop an accurate spectral model of evaluating CLQ based on MODIS-GPPs. The models were tested and compared in the Conghua and Zengcheng districts of Guangzhou City, Guangdong, China. The results showed that based on field measured GPP data, the validation accuracy of 30 m spatial resolution MODIS GPP products with a root mean square error (RMSE) of 7.43 and normalized RMSE (NRMSE) of 1.59% was higher than that of the 500 m MODIS GPP products, indicating that the downscaled 30 m MODIS GPP products by EBK were more appropriate than the 500 m products. Compared with PLSR (R2 = 0.38 and RMSE = 87.97) and SVR (R2 = 0.64 and RMSE = 64.38), the GA-BPNN model (R2 = 0.69 and RMSE = 60.12) was more accurate to evaluate CLQ, implying a non-linear relationship of CLQ with the GPP spectral indicator. This is the first study to improve the accuracy of estimating CLQ using the rice growth stage GPP-driven spectral model by GA-BPNN and can thus advance the literature in this field.


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Jackline Abu-Nassar ◽  
Maor Matzrafi

Solanum rostratum Dunal is an invasive weed species that invaded Israel in the 1950s. The weed appears in several germination flashes, from early spring until late summer. Recently, an increase in its distribution range was observed, alongside the identification of new populations in the northern part of Israel. This study aimed to investigate the efficacy of herbicide application for the control of S. rostratum using two field populations originated from the Golan Heights and the Jezreel Valley. While minor differences in herbicide efficacy were recorded between populations, plant growth stage had a significant effect on herbicide response. Carfentrazone-ethyl was found to be highly effective in controlling plants at both early and late growth stages. Metribuzin, oxadiazon, oxyfluorfen and tembutrione showed reduced efficacy when applied at later growth stage (8–9 cm height), as compared to the application at an early growth stage (4–5 cm height). Tank mixes of oxadiazon and oxyfluorfen with different concentrations of surfactant improved later growth stage plant control. Taken together, our study highlights several herbicides that can improve weed control and may be used as chemical solutions alongside diversified crop rotation options. Thus, they may aid in preventing the spread and further buildup of S. rostratum field populations.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binu Melit Devassy ◽  
Sony George

AbstractDocumentation and analysis of crime scene evidences are of great importance in any forensic investigation. In this paper, we present the potential of hyperspectral imaging (HSI) to detect and analyze the beverage stains on a paper towel. To detect the presence and predict the age of the commonly used drinks in a crime scene, we leveraged the additional information present in the HSI data. We used 12 different beverages and four types of paper hand towel to create the sample stains in the current study. A support vector machine (SVM) is used to achieve the classification, and a convolutional auto-encoder is used to achieve HSI data dimensionality reduction, which helps in easy perception, process, and visualization of the data. The SVM classification model was re-established for a lighter and quicker classification model on the basis of the reduced dimension. We employed volume-gradient-based band selection for the identification of relevant spectral bands in the HSI data. Spectral data recorded at different time intervals up to 72 h is analyzed to trace the spectral changes. The results show the efficacy of the HSI techniques for rapid, non-contact, and non-invasive analysis of beverage stains.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Yerin Lee ◽  
Soyoung Lim ◽  
Il-Youp Kwak

Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). This presents the solution to Task 1 of the DCASE 2020 challenge submitted by the Chung-Ang University team. Task 1 addressed two challenges that ASC faces in real-world applications. One is that the audio recorded using different recording devices should be classified in general, and the other is that the model used should have low-complexity. We proposed two models to overcome the aforementioned problems. First, a more general classification model was proposed by combining the harmonic-percussive source separation (HPSS) and deltas-deltadeltas features with four different models. Second, using the same feature, depthwise separable convolution was applied to the Convolutional layer to develop a low-complexity model. Moreover, using gradient-weight class activation mapping (Grad-CAM), we investigated what part of the feature our model sees and identifies. Our proposed system ranked 9th and 7th in the competition for these two subtasks, respectively.


Sign in / Sign up

Export Citation Format

Share Document