scholarly journals An Experimental and Numerical Study on Acoustic Emission in the Process of Rock Damage at Different Stress Paths

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Haoyu Rong

The study of the damage process of rock under external loads is good guidance for geotechnical construction design. The differences in rock damage processes and damage modes under different stress paths are rarely reported. To explore the effects of stress paths on rock damage processes, uniaxial compression experiments under three stress paths were conducted. Numerical simulation is also used to simulate the rock acoustic emission (AE) and fracture process. The results of the study indicate that the maximum acoustic emission events are at the peak of stress, and fractures are mainly formed at this stage. The peak of AE energy occurs before the peak of AE events. The damage pattern and fragmentation size of the rock are related to the way the stresses are loaded. It is noticed that there is appearance of a quiet period of AE events prior to the production of significant cracks. Minor damage to the rock is accompanied by the generation of bright white spots in the specimen, which is due to the high tensile or shear stress in the units. When the stress in these units exceeds their strength, the units break down and tiny cracks appear. As the external load increased, the cracks developed and penetrated, and the specimen was damaged. Under cyclic loading and unloading, the number of AE events increased significantly compared with the controlled displacement and controlled stress loading methods, and the radius of the AE circle became larger and the energy also increased, which indicates a greater degree of destruction of the rock under cyclic loading and unloading. The results of the study are of reference significance for rock crack propagation and fracture mode influenced by stress conditions and provide some guidance for construction design under different working conditions.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingqiang Sheng ◽  
Awei Mabi ◽  
Xigen Lu

The triaxial cyclic loading and unloading test was carried out on a TAW-2000 rock mechanics to study the permeability characteristics of deep-buried sandstone. This paper analyzed the evolution laws of permeability, elastic modulus, rock damage, dissipated energy, and acoustic emission events of sandstone under different confining pressures. It also introduced the concept of relative strain and further discussed the relationship between relative strain and permeability. The test results showed that the permeability of sandstone under cyclic loading and unloading obviously experienced three stages. At a low strain level, the damage degree of sandstone was low. As a result, both the number of acoustic emission events and the proportion of the dissipated energy density were small. In this stage, with increasing the stress, the permeability decreased. With the increase of the relative strain, the propagation of fissure increased through rock interior and the damage of rock was accumulated. Consequently, the number of acoustic emission events grew slowly, and the proportion of dissipated energy density and the damage variable (D) increased gradually. In this stage, the permeability increases. As the axial strain reached the peak strain, the fissures developed into cracks and the rock failure happened. The number of acoustic emission events increased rapidly; both the proportion of the dissipated energy density and the damage variable (D) obtain the maximum value. In this stage, the permeability increased greatly. In this study, the point of fissure propagation of rock specimens was used as the point of demarcation. Before the fissures propagated, the permeability increased slowly and it was in accordance with a linear function. After the fissures propagated, the degree of rock damage increased, and the permeability increased in the form of an exponential function. The larger the confining pressure was, the smaller the relative strain corresponding to the point of fissure propagation was.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986102
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Lixiang Xie ◽  
Guangming Zhao ◽  
Deyu Qian

It is of significance to study the damage and destruction of rock under cyclic loading in geotechnical engineering. We determined the trends in damage evolution of sandstone under constant-amplitude and tiered cyclic loading and unloading under uniaxial compression. The results of the study show that (1) the variation of acoustic-emission events was consistent with the stress curves and 89% of all acoustic-emission events occurred during the cycling stages. The observed Kaiser effect was more notable in tiered cycling. (2) The damage variable increased sharply in the cycling stages and its increment was 0.07 higher for tiered cycling than constant-amplitude cycling. Sandstone exhibited greater damage under tiered cyclic loading and unloading. (3) Equations for the evolution of the damage variable under the two cycle modes were obtained by fitting of experimental data. (4) The fractal dimensions of the constant-amplitude cycle were larger than those of the tiered cycle. The process of damage and destruction presents a trend of reducing fractal dimension. The damage accumulation of sandstone under tiered cycling was faster than under constant-amplitude cycling. These results provide references for damage and early warning of rock under both constant-amplitude and tiered cyclic loading and unloading.


2020 ◽  
Vol 56 (1) ◽  
pp. 3-17
Author(s):  
Xiaojing Li ◽  
Peijie He ◽  
Jianhui Tang ◽  
Xudong Chen

In underground engineering, such as mining engineering and deep tunnel engineering, the rock is often loaded and unloaded repeatedly. The strength of rock under cyclic load is lower than that under static load. To obtain the fracture response of the rock, the three-point bending tests of notched granite beams under cyclic loading and unloading were carried out with Electro-hydraulic Servo Material Test System. The acoustic emission technology was adopted to monitor the acoustic emission events of sample in the process of fracture. It is revealed that the fracture toughness of granite under cyclic loading and unloading is lower than that under static loading. Based on the acoustic emission energy obtained from monitoring, the damage evolution during cyclic loading and unloading was analyzed. The fracture mode of granite samples is analyzed by the RA value-average frequency correlation method. And the Felicity ratio during the loading and unloading cycle was calculated to evaluate the severity of initial damage of the material. It is revealed that Kaiser effect appears only in the elastic deformation stage of cyclic loading unloading bending. The Holmquist–Johnson–Cook damage constitutive model and Weibull distribution were used to establish the heterogeneous granite model. And the three-point bending of the model under cyclic loading and unloading was simulated to disclose the crack growth mechanism of rock. The study may provide some references for rock instability control in geotechnical engineering construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xinzhan Qin ◽  
Yu Zhou ◽  
Manchao He

Due to the adjustment of energy structure, a large number of coal mines are abandoned. Considering the environmental and economic effects, many experts proposed to use the abandoned mine cavern as the reservoir of the pumped storage power station. Furthermore, considering the long-term effects of repeated pumping and drainage and hydrodynamic pressure on the surrounding rock in coal mines, a large amount of sandstone was collected from the Ruineng coal mine in Yan’an city to carry out a series of laboratory tests. Through uniaxial compression testing of rock samples with different water content rates, combined with acoustic emission (AE) analysis, the strength softening and macrodeformation characteristics are obtained, and the influence of water content on acoustic emission characteristics is clarified. The mechanical properties of water bearing rock under cyclic loading and unloading experiments with varying upper limits are obtained using a triaxial test system, and the precursory information of rock failure is captured, providing significant guidance for stability analysis and instability warning for surrounding rock in pumped storage power stations.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianzuo Wang ◽  
Chunli Wang ◽  
Fei Xue ◽  
Linxiang Wang ◽  
Beyene Hana Teshome ◽  
...  

To explore the characteristics of rock deformation and failure under cyclic loading and unloading, the MTS815 rock mechanics test system and acoustic emission (AE) signal acquisition system were used to perform cyclic loading and unloading tests on red sandstone samples. The results showed that, compared with the uniaxial compression test, cyclic loading and unloading had a certain strengthening effect on the strength of the samples. The plastic deformation of the rock samples increased as the number of cycles increased. Based on AE signals, the cracking mode classification was analyzed on the basis of the average frequency and the rise angle of the waveforms. It was observed that the Felicity ratio gradually decreased with the increase in the stress level, which showed a cumulative damage effect. From the perspective of energy, the obvious increase of AE energy rate was mainly concentrated in the early and late stages of uniaxial compression, while the significant increase of dissipated energy rate occurred in the late stage of uniaxial compression. During the cyclic loading and unloading, most of the work done by external forces in the compaction stage and the elastic stage was converted into elastic strain energy, and dissipated energy began to gradually increase in the stage of stable fracture development. In addition, it was found that the damage evolution of the rock samples changed from slow to fast, and the dissipated energy ratio increased when failure was approaching.


Sign in / Sign up

Export Citation Format

Share Document