scholarly journals Integrative Bioinformatics Analysis Reveals That Infarct-Mediated Overexpression of Potential miR-662/CREB1 Pathway-Induced Neuropeptide VIP Is Associated with the Risk of Atrial Fibrillation: A Correlation Analysis between Myocardial Electrophysiology and Neuroendocrine

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Pengpai Zhang ◽  
Bo Liu

Background. Neuropeptide levels are closely associated with the development and maintenance of atrial fibrillation (AF) after myocardial infarction (MI). This study was aimed at investigating the regulatory network that affects neuropeptide expression through transcription factor modulation. Methods. We downloaded three datasets from the GEO database, and after performing differential and crosstabulation analyses, we screened out differentially expressed (DE) miRNAs and DEmRNAs coexpressed in AF and MI and performed DEmiRNA–DEmRNA pairing prediction; from which, we constructed a regulatory network. Subsequently, the hsa-miR-662-CREB1-VIP axis was obtained, and the role of CREB1 and VIP in the development of AF after MI was further revealed by single-cell analysis and prediction model construction. Results. In this study, eight DEmRNAs and four miRNAs were screened. hsa-miR-662 was identified by database integration analysis to regulate the transcription factor CREB1, a potential transcriptional regulator in VIP. CREB1 and VIP are mainly enriched in pathways of energy metabolism, ion channels, and myocardial contraction. CREB1 and VIP were identified as biomarkers of the onset and prognosis of MI and AF. Conclusions. In this study, the miR-662/CREB1/VIP regulatory pathway was constructed through integrated analysis of datasets, thus providing new ideas to study the mechanisms of AF development.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Tao Liu ◽  
Guoru Zhang ◽  
Yaling Wang ◽  
Mingyue Rao ◽  
Yang Zhang ◽  
...  

Background. Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). Methods. The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. Results. A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. Conclusion. We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shengyuan Huang ◽  
Yating Deng ◽  
Jiaqi Xu ◽  
Jiachen Liu ◽  
Liming Liu ◽  
...  

Atrial fibrillation (AF) is the most common persistent arrhythmia, but the mechanism of AF has not been fully elucidated, and existing approaches to diagnosis and treatment face limitations. Recently, exosomes have attracted considerable interest in AF research due to their high stability, specificity and cell-targeting ability. The aim of this review is to summarize recent literature, analyze the advantages and limitations of exosomes, and to provide new ideas for their use in understanding the mechanism and improving the diagnosis and treatment of AF.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

Sign in / Sign up

Export Citation Format

Share Document