scholarly journals A Hybrid Model Method for Accurate Surface Deformation and Incision Based on FEM and PBD

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shijie Tan ◽  
Hongjun Zhou ◽  
Jinjin Zheng

In some simulations like virtual surgery, an accurate surface deformation method is needed. Many deformation methods focus on the whole model swing and twist. Few methods focus on surface deformation. For the surface deformation method, two necessary characteristics are needed: the accuracy and real-time performance. Some traditional methods, such as position-based dynamics (PBD) and mass-spring method (MSM), focus more on the real-time performance. Others like the finite element method (FEM) focus more on the accuracy. To balance these two characteristics, we propose a hybrid mesh deformation method for accurate surface deformation based on FEM and PBD. Firstly, we construct a hybrid mesh, which is composed of a coarse volume mesh and a fine surface mesh. Secondly, we implement FEM on coarse volume mesh and PBD on fine surface mesh, and the deformation of fine surface mesh is constrained by the displacement of the coarse volume mesh. Thirdly, we introduced a small incision process for our proposed method. Finally, we implemented our method on a simple deformation simulation and a small incision simulation. The result shows an accurate surface deformation performance by implementing our method. The incision effect shows the compatibility of our proposed method. In conclusion, our proposed method acquires a better trade-off between accuracy and real-time performance.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Seren Soner ◽  
Can Ozturan

We present a parallel mesh generator called PMSH that is developed as a wrapper code around the open source sequential Netgen mesh generator. Parallelization of the mesh generator is carried out in five stages: (i) generation of a coarse volume mesh; (ii) partitioning of the coarse mesh; (iii) refinement of coarse surface mesh to produce fine surface submeshes; (iv) remeshing of each fine surface submesh to get a final fine mesh; (v) matching of partition boundary vertices followed by global vertex numbering. A new integer based barycentric coordinate method is developed for matching distributed partition boundary vertices. This method does not have precision related problems of floating point coordinate based vertex matching. Test results obtained on an SGI Altix ICE X system with 8192 cores confirm that our approach does indeed enable us to generate multibillion element meshes in a scalable way.


Author(s):  
Qiyun Sun ◽  
Wanggen Wan ◽  
Xiang Feng ◽  
Guoliang Chen ◽  
◽  
...  

Skeleton based skin deformation methods are widely used in computer animations, with the help of some animation software, like 3D Studio Max and Maya. Most of these animation methods are based on linear blending skinning algorithm and its improved versions, showing good real-time performance. However, it is difficult for new users to use these complicated softwares to make animation. In this paper, we focus on surface based mesh deformation methods. We use spokes and rims deformation method to animate mesh models. However, this method shows poor real-time performance with high-resolution mesh models. We propose a novel animation method based on mesh decimation, making it possible to animate high-resolution mesh models in real time with the spokes and rims method. In this way, users only need to control the movement of handles to acquire intuitively reasonable animation of arbitrary mesh model. It is easier and more convenient for users to make their own animation. The experimental results show that the proposed animation method is feasible and effective and shows great real-time performance.


Vestnik MEI ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 101-108
Author(s):  
Anton Yu. Poroykov ◽  
◽  
Konstantin M. Lapitskiy ◽  

2014 ◽  
Vol 39 (5) ◽  
pp. 658-663 ◽  
Author(s):  
Xue-Min TIAN ◽  
Ya-Jie SHI ◽  
Yu-Ping CAO

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


2021 ◽  
Vol 62 ◽  
pp. 102465
Author(s):  
Karol Salwik ◽  
Łukasz Śliwczyński ◽  
Przemysław Krehlik ◽  
Jacek Kołodziej

Sign in / Sign up

Export Citation Format

Share Document