scholarly journals Synthesis and Antifungal and Insecticidal Activities of Novel N-Phenylbenzamide Derivatives Bearing a Trifluoromethylpyrimidine Moiety

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuetong Yu ◽  
Wenjun Lan ◽  
Meihang Chen ◽  
Su Xu ◽  
Xiaoxi Luo ◽  
...  

Seventeen novel N-phenylbenzamide derivatives bearing a trifluoromethylpyrimidine moiety were synthesized via four-step reactions. Their antifungal and insecticidal properties were evaluated. Antifungal test results demonstrated that some of the synthesized compounds showed better in vitro bioactivities against Phomopsis sp., Botryosphaeria dothidea (B. dothidea), and Botrytis cinerea (B. cinerea) at 50 μg/mL than pyrimethanil. Unfortunately, the synthesized compounds revealed lower insecticidal activities against Spodoptera frugiperda (S. frugiperda) and Mythimna separata (M. separata) at 500 μg/mL than chlorantraniliprole.

2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


1986 ◽  
Vol 64 (10) ◽  
pp. 2368-2371 ◽  
Author(s):  
Keith N. Egger ◽  
J. W. Paden

Forty isolates of postfire ascomycetes (Pezizales) were tested for in vitro pathogenicity on seeds and germinants of lodgepole pine, Pinus contorta Dougl. Two known pathogens, Caloscypha fulgens (Pers.) Boud. and Botrytis cinerea Pers., were included as a check of the method. Caloscypha fulgens was the only fungus that caused serious declines in seed germination, although several species of postfire Pezizales were capable of preemergence seed infection. Rhizina undulata Fr. and Pyropyxis rubra (Peck) Egger were strongly pathogenic on germinants. Pyropyxis rubra was not previously known to be pathogenic. Many isolates were weakly pathogenic on germinants under the conditions tested.


2021 ◽  
Author(s):  
Ingrid Zanella-Saenz ◽  
Elisabeth A. Herniou ◽  
Jorge E. Ibarra ◽  
Ma.Cristina Del Rincón-Castro ◽  
Ilse Alejandra Huerta-Arredondo

Abstract Fall armyworm (FAW), Spodoptera frugiperda (Smith, 1797), is a polyphagous, voracious, and economically important agricultural pest. Biological control of FAW is a strategy that must be further explored. This study evaluated six baculovirus strains isolated from infected FAW larvae from Mexico, Argentina, Honduras, and the United States. Five alphabaculoviruses (SfNPV-An2, SfNPV-Arg, SfNPV-Fx, SfNPV-Ho and SfNPV-Sin) and one betabaculovirus (SfGV-RV), were tested against FAW larvae, showing a wide diversity of virulence levels among strains when their estimated LC50s were compared, being SfNPVArg, SfNPV-Ho and SfNPV-Fx more virulent than SfNPV-An 2 , SfNPV-Sin and SfGV-RV. To determine any virulence difference in vitro studies of these isolates, Sf9 cell cultures were used. Interestingly, only ODVs from four of the test SfNPV strains showed infectivity on Sf9 cell cultures, and some differences in virulence were observed. Genomic restriction analyses and partial sequences of lef-8, lef-9 , and polh/granulin genes showed little variability among alphabaculoviruses, both, among them and with previously reported sequences. However, sequences from SfGV-RV were closer to previously reported sequences from the SfGVVG008 strain than the SfGV-Arg and SfGV-VG014 strains. The great difference in the in vivo virulence was not correlated with great similarity among the isolates. The characterization of these six baculoviruses isolates offers the basis for exploring their potential as biological control agents against S. frugiperda, as well the initial studies on their specific infection mechanisms, evolution, and ecology.


2005 ◽  
Vol 30 (5) ◽  
pp. 516-521 ◽  
Author(s):  
Alderi E Araújo ◽  
Luiz A Maffia ◽  
Eduardo S. G Mizubuti ◽  
Acelino C Alfenas ◽  
Guy de Capdeville ◽  
...  

Botrytis blight caused by Botrytis cinerea is an important disease of rose (Rosa hybrida) grown in greenhouses in Brazil. As little is known regarding the disease epidemiology under greenhouse conditions, pathogen survival in crop debris and as sclerotia was evaluated. Polyethylene bags with petals, leaves, or stem sections artificially infected with B. cinerea were mixed with crop debris in rose beds, in a commercial plastic greenhouse. High percentage of plant parts with sporulation was detected until 60 days, then sporulation decreased on petals after 120 days, and sharply decreased on stems or leaves after 90 days. Sporulation on petals continued for 360 days, but was not observed on stems after 150 days or leaves after 240 days. Although the fungus survived longer on petals, stems and leaves are also important inoculum sources because high amounts of both are deposited on beds during cultivation. Survival of sclerotia produced on PDA was also quantified. Sclerotia germination was greater than 75% in the initial 210 days and 50% until 360 days. Sclerotia weight gradually declined but they remained viable for 360 days. Sclerotia were produced on the buried petals, mainly after 90 days of burial, but not on leaves or stems. Germination of these sclerotia gradually decreased after 120 days, but lasted until 360 days. Higher weight loss and lower viability were observed on sclerotia produced on petals than on sclerotia produced in vitro


Sign in / Sign up

Export Citation Format

Share Document