An Attempt at Biological Control of Blossom Blight of Rose Caused by Botrytis cinerea Using some Local Trichoderma spp. Strains

2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.

2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


2001 ◽  
Vol 41 (5) ◽  
pp. 697 ◽  
Author(s):  
D. R. Beasley ◽  
D. C. Joyce ◽  
L. M. Coates ◽  
A. H. Wearing

Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20˚C. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.


2016 ◽  
Vol 25 (4) ◽  
pp. 331 ◽  
Author(s):  
Mutia Erti Dwiastuti ◽  
Melisa N Fajri ◽  
Yunimar Yunimar

<p>Layu yang disebabkan oleh Fusarium spp. merupakan salah satu penyakit penting tanaman stroberi (Fragaria x ananassa<br />Dutch.) di daerah subtropika, yang dapat menggagalkan panen. Penelitian bertujuan untuk mempelajari potensi Trichoderma spp.<br />dalam mengendalikan Fusarium spp. Isolat Trichoderma spp. diisolasi dari rizosfer tanaman stroberi dan Fusarium spp. diisolasi<br />dari tanaman stroberi yang mengalami layu fusarium. Isolat cendawan dimurnikan, dikarakterisasi, dan dibandingkan dengan isolat<br />cendawan acuan. Uji antagonis dilakukan secara in vitro dan in vivo. Uji in vitro dilakukan dengan metode dual culture dan slide<br />culture. Uji in vivo dilakukan di rumah kasa menggunakan dua varietas stroberi, yaitu Santung serta California. Hasil penelitian <br />in vitro memperoleh dua jenis isolat cendawan antagonis, yaitu Trichoderma sp.1 dan Trichoderma sp.2, dan dua jenis cendawan <br />patogen Fusarium, yaitu Fusarium sp.1 dan Fusarium sp.2. Isolat Trichoderma sp.1 memiliki kemampuan antagonisme lebih tinggi<br />dibandingkan dengan isolat Trichoderma sp.2. Isolat Trichoderma sp.1 mampu menghambat pertumbuhan Fusarium sp.1 dan<br />Fusarium sp.2 secara berturut- turut, yaitu 49,7% dan 49,6%. Isolat Trichoderma sp.2 mampu menghambat pertumbuhan Fusarium<br />sp.1 dan Fusarium sp.2 lebih rendah, yaitu sebesar 45,8% dan 43,4%. Mekanisme antagonis yang terjadi antara cendawan antagonis<br />dan patogen pada uji in vitro, yaitu pembelitan dan intervensi hifa. Hasil pada uji in vivo pada perlakuan Trichoderma sebelum<br />Fusarium menunjukkan keefektifan pengendalian paling baik (41,72%) dibanding perlakuan lain. Varietas Santung lebih tahan<br />terhadap serangan patogen dibandingkan varietas California. Implikasi dari hasil penelitian ini adalah, agens hayati Trichoderma<br />spp. lebih optimal digunakan sebagai pencegahan (preventif) tanpa menunggu tanaman terinfeksi penyakit layu fusarium.</p>


2017 ◽  
Vol 47 (1) ◽  
pp. 102-109
Author(s):  
Alexandre Dinnys Roese ◽  
Gloria Soriano Vidal ◽  
Erica Camila Zielinski ◽  
Louise Larissa May De Mio

ABSTRACT Trichoderma is a biological control agent used to improve the resistance to diseases, which may also estimulate plant growth. Commercial products with Trichoderma are available in different countries, but most of them are based on conidial suspension. This study aimed at evaluating the efficiency of native Trichoderma populations collected from different production systems and applied to the soil by using two methods: conidial suspension and inoculated oat grains. The efficiency of native Trichoderma populations collected from conventional crop and agropastoral and agrosilvopastoral systems in a long-term field experiment was evaluated. The populations efficiencies were evaluated by in vivo tests that assessed the control of soybean damping-off caused by Rhizoctonia solani, plant height and soil colonization with the antagonist. In vitro tests, such as dual culture and assessment of volatile and non-volatile compounds, were conducted to study the mode of action of the populations. Some native Trichoderma populations were as efficient as those from a commercial product in all tests. Compared to conidial suspension, Trichoderma spp. inoculated through oat grains promoted a greater damping-off control, higher plants and more colony-forming units per gram of soil after 3 months of application. Native populations performed equally well or even better than the commercial strain, and the use of a substrate that supports the Trichoderma growth was more efficient than the conidial suspension method.


2020 ◽  
Vol 3 (4) ◽  
pp. 286-293
Author(s):  
Nhut Nhu Nguyen ◽  
Nguyen Thi Ngoc Bich ◽  
Nguyen Thanh Truong ◽  
Vo Thi Xuyen

In recent years, Neoscytalidium dimidiatum has caused severe white spot disease in Pytaya, while no effective controls have been taken. In this study, two strains of N. dimidiatum NdGV and NdBT were obtained by isolation on water agar medium containing streptomycin, morphological tests, in vitro and in vivo pathogenical tests, and molecular biology tests by sequencing the genes ITS1 and ITS4. By using dual culture technique on potato-glucose agar medium, 100% of Trichoderma spp., 75% of Bacillus spp. and 20% of Streptomyces spp. were able to antagonize N. dimidiatum. The mean antagonistic effect with N. dimidiatum of Trichoderma spp. was higher than Bacillus spp. and the lowest was Streptomyces spp. 56.8%, 55.3% and 54.3% respectively. Especially 5 strains Trichoderma sp. 8.3.5, 8.3.7, 8.3.14, 8.3.19, and 8.3.20 had antagonistic effects of over 60%. The application potential of the 5 selected Trichoderma strains to control N. dimidiatum disease was further strengthened when their antagonistic effect was relatively stable on Pitaya juice agar medium while all Bacillus sp. and Streptomyces sp. were lost the ability to antagonize. It was noteworthy that four of the five strains of Trichoderma sp. were highly compatible, suggesting further studies are needed to apply their combined potency in enhancing the control of N. dimidiatum NdBT and NdGV on Pitaya.  


Author(s):  
Divya Bhandhari ◽  
Amar Singh ◽  
J.V. Patel ◽  
D.K. Banyal

Background: Colocasia is cultivated globally for its edible corm and leaves. Leaf blight incited by Phytophthora colocasiae is the most destructive disease of colocasia. The current study aims at biological management of the disease. Methods: Nine Trichoderma isolates from the colocasia rhizosphere soil along with five designated isolates of Trichoderma spp. already available in the Department of Plant Pathology, CSK HPKV, Palampur were tested in vitro for antagonistic activity against P. colocasiae. Similarly, six unidentified bacterial strains isolated from colocasia phylloplane and available Pseudomonas fluorescens were evaluated for antagonistic activity against P. colocasiae under in vitro conditions. The bioagents found best under in vitro conditions were evaluated in vivo. Result: Trichoderma isolate Ti-6 was found significantly superior bioagent as it resulted in 72.9 per cent mycelial growth inhibition of P. colocasiae followed by Ti-5 (63.2%), Ti-4 (60.1%) and Ti-1 (54.5%). Amongst bacterial antagonists, Pseudomonas fluorescens gave maximum mycelial growth inhibition of 50.5 per cent followed by Pb-3 (31.4%) and Pb-6 (30.5%). The efficacy of five Trichoderma spp isolates viz., Ti-6, Ti-5, Ti-4, Ti-1, T. viride and one bacterial isolate of P. fluorescens found effective under in vitro were also evaluated in vivo using three delivery systems under net house condition. Corm treatment with bioagents was found superior for management of colocasia blight. Corm treatment with Ti-6 was found to be significantly superior to other treatments as 93.74 per cent of disease control was observed. For drenching, bioagent Ti-6 was proved best in managing blight disease (88.91%) followed by Ti-5 (88.90%). However, Ti-5 isolate of Trichoderma sp. as soil application was found superior with 90.02 per cent disease control.


1998 ◽  
Vol 123 (5) ◽  
pp. 875-881 ◽  
Author(s):  
Elazar Fallik ◽  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp ◽  
Ann M. Clements ◽  
Randy W. Collins ◽  
...  

Some plant-derived natural volatile compounds exhibit antifungal properties and may offer an opportunity to control the causes of postharvest spoilage without affecting quality of, or leaving a residue on, fresh produce. The natural wound volatile (E)-2-hexenal has exhibited significant antifungal activity in earlier studies, but effects on spore germination and mycelial growth have not been separated, nor has the inhibitory mode of action been determined. To determine the efficacy of (E)-2-hexenal for control of Botrytis cinerea Pers. ex Fr. spore germination and mycelial growth, and to examine the mode of action, in vitro and in vivo studies were performed. Under in vitro bioassay conditions, spore germination was more sensitive to the compound than was mycelial growth. Vapor from 10.3 μmol of (E)-2-hexenal in a 120-mL petri dish completely inhibited spore germination. However, 85.6 μmol of (E)-2-hexenal was required to completely inhibit mycelial growth. Lower concentrations of the compound (5.4 and 10.3 μmol) significantly stimulated mycelial growth, especially when the volatile was added 2 days following inoculation. Mycelial growth did not occur as long as the vapor-phase concentration was 0.48 μmol·L-1 or greater. Light microscopy analysis indicated that a high concentration of volatile compound dehydrated fungal hyphae and disrupted their cell walls and membranes. Exposure of B. cinerea-inoculated and non-inoculated strawberry (Fragaria ×ananassa Duch.) fruit in 1.1-L low-density polyethylene film-wrapped containers to vapor of (E)-2-hexenal at 85.6 or 856 μmol (10 or 100 mL, respectively) per container for durations of 1, 4, or 7 days during 7 days of storage at 2 °C promoted the incidence of B. cinerea during subsequent shelf storage at 20 to 22 °C. Loss of fruit fresh mass and fruit firmness during storage at 22 °C was increased by (E)-2-hexenal treatment, but fruit total soluble solids, pH, titratable acidity, and color (L, C, and H values) were not affected. Thus, maintenance of a high vapor-phasel level of (E)-hexenal, perhaps >0.48 μmol·L-1, may be necessary to inhibit mycelial growth and avoid enhancing postharvest mold problems, while significantly higher levels may be necessary to completely eliminate the pathogen.


Author(s):  
Laxman Prasad Balai ◽  
R. B. Singh ◽  
Asha Sinha ◽  
S. M. Yadav

Efficacy of bio agents and systemic and non-systemic fungicides @ 50, 100, 200, 250 and 500 ppm were evaluated In vitro against Alternaria tenuissima causing Alternaria blight of pigeonpea. The relative efficacy of bio agents were studied in dual culture plate method showed that Hypocrea rufa was found most effective antagonist against test pathogen followed by T. harzianum. Efficacy of six fungicides was tested in poisoned food technique. Among the six fungicides tested, mancozeb was found most effective against test pathogen followed by Chlorothalonil and Iprodione. Propineb was least effective against mycelial growth of test pathogen. Raise in concentration of fungicides was more effective in inhibiting the mycelial growth of the pathogen. Field condition studies were found out to be the effect of seed treatment, foliar spray, seed treatment+ foliar spray with six fungicides and two bio agents and their combination used as against pathogen. Artificial inoculation of mass culture of A. tenuissima was done in the inoculated seed treatment and after foliar spray on the plants sixty DAS. Amongst them twenty five treatments, combination of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by Mancozeb with T. harzianum and Mancozeb alone, respectively. While, T. harzianum alone was least effective and maximum disease intensity recorded as a compared to control followed by T. harzianum with double dose and T. harzianum and H. rufa combination treatment, respectively. In case of both seed treatment and foliar spray of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by combination of Mancozeb with T. harzianum and Mancozeb alone, respectively. Whereas, least effective and maximum disease intensity and disease control were observed T. harzianum alone as compared to control.


Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 421 ◽  
Author(s):  
Carmen Morales-Rodríguez ◽  
Giorgia Bastianelli ◽  
MariaPia Aleandri ◽  
Gabriele Chilosi ◽  
Andrea Vannini

The damping-off of Pinus radiata D.Don by Fusarium circinatum Nirenberg and O’Donnell represents a limiting factor in nursery production, while seed contamination with the pathogen is one of the main pathways of the pathogen movement between areas. Chemical and physical treatments have been applied with encouraging results and some limitations. In the present study, biocontrol of damping-off by F. circinatum is proposed with Trichoderma spp. complex showing complementary antagonism and biofumigation with commercial Brassica carinata A.Braun pellets with biocidal effect. Experiments were conducted in vitro and in vivo using batches of P. radiata seeds and two F. circinatum isolates. Results were highly positive, showing an excellent efficacy of a combination of Trichoderma spp. in a single preparation to reduce significantly the mortality of P. radiata seedlings in seeds bed experiment. Biofumigation with B. carinata pellets also showed efficacy in controlling the F. circinatum inoculum and reducing seed mortality in inoculated seed batches although showing some phytotoxic effect.


Sign in / Sign up

Export Citation Format

Share Document