scholarly journals Path Planning and Trajectory Tracking Strategy of Autonomous Vehicles

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Peng Han ◽  
Bingyu Zhang

With the development of global urbanization and the construction of regional urbanization, residents around urban cities are increasingly making demands on urban public transportation system. A new kind of modern public transportation vehicle named Multi-Articulated Guided Vehicle based on Virtual Track (MAAV-VT) with the advantages of beautiful, smart energy conservation and environmental protection is proposed in this paper, which aims at optimizing the public transportation system between and within urban areas. Therefore, concentrating on the general design and control strategy, the main contents of this paper are as follows. At first, the design concepts and key technologies of MAAV-VT are introduced. It is the fusion of urban rail transit operation mode and advanced automotive technologies, which have the characteristics of 100% low-floor, medium to high velocity, medium to big capacity, and low construction cost. Then, as the core subsystem, to guarantee the properties of self-guiding and trajectory tracking of the new vehicle, this paper is focused on the control system based on the dynamics and kinematics model of the whole multi-articulated vehicle. The multi-trace-points cooperative trajectory tracking control strategy on the basis of the circulation of feasible path generation method is proposed and the lateral controller is designed for trajectory tracking. The process of feasible path generation is conducted once the tracking error exceeded. A simulation platform is built considering the mechanical properties of each vehicle element and the characteristic of articulated mechanism. Finally, the function of control system is validated. The tracking error of each vehicle elements would be reduced to make sure the whole multi-articulated vehicle moves along the preset virtual track.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252542
Author(s):  
Yi Yu ◽  
Peng Han

The control method is the central point of the unmanned vehicles. As the core system to guarantee the properties of self-decision and trajectory tracking of the unmanned vehicles, a new kind of trajectory tracking method based on the circulation of feasible path planning for the unmanned vehicles are proposed in this article which considered the dynamics and kinematics characteristics of vehicles. The multi-trace-points cooperative trajectory tracking control strategy on the basis of the circulation of feasible path generation method is proposed and the lateral controller is designed for trajectory tracking. The process of feasible path generation is conducted once the tracking error exceeded. A simulation platform of the trajectory tracking simulation of unmanned vehicles is built considering the mechanical properties of system elements and the mechanical characteristics. Finally, the proposed trajectory tracking method is verified. The tracking error would be reduced to make sure the vehicles move along the pre-set virtual track.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 55290-55304 ◽  
Author(s):  
Xing-Gang Luo ◽  
Hong-Bo Zhang ◽  
Zhong-Liang Zhang ◽  
Yang Yu ◽  
Ke Li

1972 ◽  
Vol 6 (1) ◽  
pp. 81-102 ◽  
Author(s):  
Thomas F. Golob ◽  
Eugene T. Canty ◽  
Richard L. Gustafson ◽  
Joseph E. Vitt

2013 ◽  
Vol 6 (13) ◽  
pp. 2366-2372
Author(s):  
Aows N. Altef ◽  
Hamidreza Mokhtarian ◽  
Foad Shokri ◽  
Amiruddin Ismail ◽  
Riza Atiq O.K. Rahmat

Sign in / Sign up

Export Citation Format

Share Document