scholarly journals Mitigation of Imperfect Successive Interference Cancellation and Wavelet-Based Nonorthogonal Multiple Access in the 5G Multiuser Downlink Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muneeb Ahmad ◽  
Sobia Baig ◽  
Hafiz Muhammad Asif ◽  
Kaamran Raahemifar

The fourth Industrial Revolution is expected to lead to an era of technological innovation and digitization that would require connectivity by the users, anywhere and anytime. The fifth generation of wireless communication systems and the technologies therein are being explored to cater to high connectivity needs that encompass high data rates, very low latencies, energy-efficient systems, etc. A multiuser environment is anticipated that would require multiple access techniques, such as Nonorthogonal Multiple Access (NOMA). The user data in the power domain NOMA is superimposed, at the transmitter base station, which is in turn subjected to Successive Interference Cancellation at the user end. In the multiuser downlink, the desired user’s signal is subjected to imperfect SIC due to incomplete cancellation of the undesired user’s signal. Pulse-shaping of NOMA symbols using wavelet transform is proposed to mitigate the multiuser interference due to imperfect SIC. Closed-form symbol error rate (SER) expression is derived for the wavelet NOMA system for a three-user scenario. Analytical results show that wavelet transform pulse-shaped NOMA performs better compared to Fourier transform pulse-shaped NOMA symbols in mitigating SIC and thereby minimize the residual error due to imperfect SIC.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6237
Author(s):  
Isaac Sim ◽  
Young Ghyu Sun ◽  
Donggu Lee ◽  
Soo Hyun Kim ◽  
Jiyoung Lee ◽  
...  

In this paper, a deep learning-based successive interference cancellation (SIC) scheme for use in nonorthogonal multiple access (NOMA) communication systems is investigated. NOMA has become a notable technique in the field of mobile wireless communication because of its capacity to overcome orthogonality, unlike a conventional orthogonal frequency division multiple access (OFDMA) communication system. In NOMA communication systems, SIC is one of the decoding schemes applied at receivers for downlink NOMA transmissions. In this paper, a convolutional neural network (CNN)-based SIC scheme is proposed to improve performance of the single base station and multiuser NOMA scheme. In contrast to existing SIC schemes, the proposed CNN-based SIC scheme can effectively mitigate losses resulting from imperfections of the SIC. The simulation results indicate that the CNN-based SIC method can successfully relieve conventional SIC impairments and achieve good detection performance. Consequently, a CNN-based SIC scheme can be considered as a potential technique for use in NOMA detection schemes.


ELKHA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Khoirun Niamah ◽  
Solichah Larasati ◽  
Raudhatul Jannah

This research based on simulation to show impact of the power allocation on Non-Orthogonal Multiple Access (NOMA) using Successive Interference Cancellation (SIC). NOMA used superposition code (SC) on the transmitter and SIC on the receiver. NOMA has two categories power domain (PD) and code domain (CD). This research based on PD-NOMA simulated for downlink. The number of users who use the same recourse block are divided into two conditions: user with apply SIC and without SIC base on the value of channel gain from each user. Applying SC on the transmitter and SIC on the receiver will cancel of interference. Novelties of this research are the best performance of power allocation and user mobility based on parameter BER and SNR. Allocation of the power transmit based on value of channel gain every user, where user with value of channel gain is low will be allocated high power transmit, and otherwise. The best result performance of BER vs SNR used ratio power transmit 0.45 dB:0.55 dB, BER  get value SNR for 17 dB and  18 dB. The best performance SNR for mobility of user with speed    = 40 km/h value SNR 18 dB for BER . This research has proposed to show impact of power transmit and interference in performance NOMA.


2021 ◽  
Author(s):  
Luca Lusvarghi ◽  
Maria Luisa Merani

<div>This work puts forth a novel analytical approach to evaluate the performance that power-domain Non-Orthogonal Multiple Access (NOMA) achieves on the uplink of a single cell. A dynamic-ordered Successive Interference Cancellation (SIC) receiver is considered, and both the case of Rayleigh and lognormal-shadowed Rayleigh fading are examined. System performance is assessed analytically, deriving either exact or approximated closed-form expressions, whose correctness and excellent accuracy are validated through Monte Carlo simulations. The analysis discloses the effects on performance of an arbitrary number n of simultaneously transmitting users, therefore unveiling where the insourmountable limits of the dynamic-ordered SIC receiver lie. Moreover, the proposed methodology allows to quantify</div><div>the impact of lognormal shadowing on NOMA efficacy. </div>


Author(s):  
Syed Rizwan Hassan ◽  
Noman Shabbir ◽  
Arooj Unbreen ◽  
Ateeq Ur Rehman ◽  
Ahmad Iqbal

Non Orthogonal Multiple Access (NOMA) is fundamentally different from the Orthogonal Multiple Access (OMA) techniques as in NOMA the user make access to channel by using the same frequency and in the same time. In NOMA the multiplexing is performed in power domain by using superposition coding at the transmitter and receiver side uses Successive Interference Cancellation (SIC) to separate the transmitted signals that are multiplexed in power domain. This technique is a possible candidate for future radio access so this is a hot topic in research. Being a different method from OMA that is implemented in all previous mobile communication generations several misconceptions have been developed about this technique. This paper give an overview about NOMA based system and also analyze the major misconceptions about this technique and also explain the concepts to resolve these mistaken beliefs.


2021 ◽  
Author(s):  
Luca Lusvarghi ◽  
Maria Luisa Merani

<div>This work puts forth a novel analytical approach to evaluate the performance that power-domain Non-Orthogonal Multiple Access (NOMA) achieves on the uplink of a single cell. A dynamic-ordered Successive Interference Cancellation (SIC) receiver is considered, and both the case of Rayleigh and lognormal-shadowed Rayleigh fading are examined. System performance is assessed analytically, deriving either exact or approximated closed-form expressions, whose correctness and excellent accuracy are validated through Monte Carlo simulations. The analysis discloses the effects on performance of an arbitrary number n of simultaneously transmitting users, therefore unveiling where the insourmountable limits of the dynamic-ordered SIC receiver lie. Moreover, the proposed methodology allows to quantify</div><div>the impact of lognormal shadowing on NOMA efficacy. </div>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.K. Shobha ◽  
H.G. Rangaraju

PurposeThe suggested work examines the latest developments such as the techniques employed for allocation of power, browser techniques, modern analysis and bandwidth efficiency of nonorthogonal multiple accesses (NOMA) in the network of 5G. Furthermore, the proposed work also illustrates the performance of NOMA when it is combined with various techniques of wireless communication namely network coding, multiple-input multiple-output (MIMO), space-time coding, collective communications, as well as many more. In the case of the MIMO system, the proposed research work specifically deals with a less complex recursive linear minimum mean square error (LMMSE) multiuser detector along with NOMA (MIMO-NOMA); here the multiple-antenna base station (BS) and multiple single-antenna users interact with each other instantaneously. Although LMMSE is a linear detector with a low intricacy, it performs poorly in multiuser identification because of the incompatibility between LMMSE identification and multiuser decoding. Thus, to obtain a desirable iterative identification rate, the proposed research work presents matching constraints among the decoders and identifiers of MIMO-NOMA.Design/methodology/approachTo improve the performance in 5G technologies as well as in cellular communication, the NOMA technique is employed and contemplated as one of the best methodologies for accessing radio. The above-stated technique offers several advantages such as enhanced spectrum performance in contrast to the high-capacity orthogonal multiple access (OMA) approach that is also known as orthogonal frequency division multiple access (OFDMA). Code and power domain are some of the categories of the NOMA technique. The suggested research work mainly concentrates on the technique of NOMA, which is based on the power domain. This approach correspondingly makes use of superposition coding (SC) as well as successive interference cancellation (SIC) at source and recipient. For the fifth-generation applications, the network-level, as well as user-experienced data rate prerequisites, are successfully illustrated by various researchers.FindingsThe suggested combined methodology such as MIMO-NOMA demonstrates a synchronized iterative LMMSE system that can accomplish the optimized efficiency of symmetric MIMO NOMA with several users. To transmit the information from sender to the receiver, hybrid methodologies are confined to 2 × 2 as well as 4 × 4 antenna arrays, and thereby parameters such as PAPR, BER, SNR are analyzed and efficiency for various modulation strategies such as BPSK and QAMj (j should vary from 8,16,32,64) are computed.Originality/valueThe proposed hybrid MIMO-NOMA methodologies are synchronized in terms of iterative process for optimization of LMMSE that can accomplish the optimized efficiency of symmetric for several users under different noisy conditions. From the obtained simulated results, it is found, there are 18%, 23% 16%, and 8% improvement in terms of Bit Error Rate (BER), Least Minimum Mean Squared Error (LMMSE), Peak to Average Power Ratio (PAPR), and capacity of channel respectively for Binary Phase Shift Key (BPSK) and Quadrature Amplitude Modulation (QAM) modulation techniques.


2019 ◽  
Author(s):  
Sanjeev Gurugopinath

Non-orthogonal multiple access (NOMA) has been recently proposed as a technique to increase the network throughput and to support massive connectivity, which are major requirements in the fifth generation (5G) communication systems. The NOMA can be realized through two different approaches, namely, in (a) power-domain, and (b) code-domain. In the power-domain NOMA (PD-NOMA), multiple users are assigned different power levels – based on their individual channel quality information – over the same orthogonal resources. The functionality of PD-NOMA comprises of two main techniques, namely, superposition coding at the transmitter and successive interference cancellation (SIC) at the receiver. An efficient implementation of SIC would facilitate to remove interference across the users. The SIC is carried out at users with the best channel conditions and is performed in descending order of the channel. On the other hand, in the code-domain NOMA (CD-NOMA), multiplexing is carried out using low-density spreading sequences for each user, similar to the code division multiple access (CDMA) technology. In this article, we provide an introduction to NOMA and present the details on the working principle of NOMA systems. Later, we discuss the different types of NOMA schemes under PD- and CD-domains, and investigate the related applications in the context of 5G communication systems. Additionally, we discuss the integration of NOMA with other technologies related to 5G such as cognitive radio and massive MIMO, and discuss some future research challenges.


2017 ◽  
Vol 63 (1) ◽  
pp. 65-72
Author(s):  
Qun Li ◽  
Ding Xu

Abstract This paper considers a fading cognitive multiple access channel (CMAC), where multiple secondary users (SUs), who share the spectrum with a primary user (PU), transmit to a cognitive base station (CBS). A power station is assumed to harvest energy from the nature and then provide power to the SUs. We investigate the power allocation problems for such a CMAC to maximize the SU sum rate under the interference power constraint, the sum transmit power constraint and the peak transmit power constraint of each individual SU. In particular, two scenarios are considered: with successive interference cancellation (SIC) and without SIC. For the first scenario, the optimal power allocation algorithm is derived. For the second scenario, a heuristic algorithm is proposed. We show that the proposed algorithm with SIC outperforms the algorithm without SIC in terms of the SU sum rate, while the algorithm without SIC outperforms the algorithm with SIC in terms of the number of admitted SUs for a high sum transmit power limit and a low peak transmit power limit of each individual SU.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Sign in / Sign up

Export Citation Format

Share Document