scholarly journals Fundamental Limits on the Uplink Performance of the Dynamic-Ordered Successive Interference Cancellation Receiver

Author(s):  
Luca Lusvarghi ◽  
Maria Luisa Merani

<div>This work puts forth a novel analytical approach to evaluate the performance that power-domain Non-Orthogonal Multiple Access (NOMA) achieves on the uplink of a single cell. A dynamic-ordered Successive Interference Cancellation (SIC) receiver is considered, and both the case of Rayleigh and lognormal-shadowed Rayleigh fading are examined. System performance is assessed analytically, deriving either exact or approximated closed-form expressions, whose correctness and excellent accuracy are validated through Monte Carlo simulations. The analysis discloses the effects on performance of an arbitrary number n of simultaneously transmitting users, therefore unveiling where the insourmountable limits of the dynamic-ordered SIC receiver lie. Moreover, the proposed methodology allows to quantify</div><div>the impact of lognormal shadowing on NOMA efficacy. </div>

2021 ◽  
Author(s):  
Luca Lusvarghi ◽  
Maria Luisa Merani

<div>This work puts forth a novel analytical approach to evaluate the performance that power-domain Non-Orthogonal Multiple Access (NOMA) achieves on the uplink of a single cell. A dynamic-ordered Successive Interference Cancellation (SIC) receiver is considered, and both the case of Rayleigh and lognormal-shadowed Rayleigh fading are examined. System performance is assessed analytically, deriving either exact or approximated closed-form expressions, whose correctness and excellent accuracy are validated through Monte Carlo simulations. The analysis discloses the effects on performance of an arbitrary number n of simultaneously transmitting users, therefore unveiling where the insourmountable limits of the dynamic-ordered SIC receiver lie. Moreover, the proposed methodology allows to quantify</div><div>the impact of lognormal shadowing on NOMA efficacy. </div>


ELKHA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Khoirun Niamah ◽  
Solichah Larasati ◽  
Raudhatul Jannah

This research based on simulation to show impact of the power allocation on Non-Orthogonal Multiple Access (NOMA) using Successive Interference Cancellation (SIC). NOMA used superposition code (SC) on the transmitter and SIC on the receiver. NOMA has two categories power domain (PD) and code domain (CD). This research based on PD-NOMA simulated for downlink. The number of users who use the same recourse block are divided into two conditions: user with apply SIC and without SIC base on the value of channel gain from each user. Applying SC on the transmitter and SIC on the receiver will cancel of interference. Novelties of this research are the best performance of power allocation and user mobility based on parameter BER and SNR. Allocation of the power transmit based on value of channel gain every user, where user with value of channel gain is low will be allocated high power transmit, and otherwise. The best result performance of BER vs SNR used ratio power transmit 0.45 dB:0.55 dB, BER  get value SNR for 17 dB and  18 dB. The best performance SNR for mobility of user with speed    = 40 km/h value SNR 18 dB for BER . This research has proposed to show impact of power transmit and interference in performance NOMA.


Author(s):  
Syed Rizwan Hassan ◽  
Noman Shabbir ◽  
Arooj Unbreen ◽  
Ateeq Ur Rehman ◽  
Ahmad Iqbal

Non Orthogonal Multiple Access (NOMA) is fundamentally different from the Orthogonal Multiple Access (OMA) techniques as in NOMA the user make access to channel by using the same frequency and in the same time. In NOMA the multiplexing is performed in power domain by using superposition coding at the transmitter and receiver side uses Successive Interference Cancellation (SIC) to separate the transmitted signals that are multiplexed in power domain. This technique is a possible candidate for future radio access so this is a hot topic in research. Being a different method from OMA that is implemented in all previous mobile communication generations several misconceptions have been developed about this technique. This paper give an overview about NOMA based system and also analyze the major misconceptions about this technique and also explain the concepts to resolve these mistaken beliefs.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Naif Alsowaidi ◽  
Tawfig Eltaif ◽  
Mohd Ridzuan Mokhtar

AbstractThis paper presents a comprehensive review of successive interference cancellation (SIC) scheme using pulse position modulation (PPM) for optical code division multiple access (OCDMA) systems. SIC scheme focuses on high-intensity signal, which will be selected after all users were detected, and then it will be subtracted from the overall received signal, hence, generating a new received signal. This process continues till all users eliminated one by one have been detected. It is shown that the random location of the sequences due to PPM encoding can reduce the probability of concentrated buildup of the pulse overlap in any one-slot time, and support SIC to easily remove the effect of the strongest signal at each stage of the cancellation process. The system bit error rate (BER) performance with modified quadratic congruence (MQC) codes used as signature sequence has been investigated. A detailed theoretical analysis of proposed system taking into account the impact of imperfect interference cancellation, the loss produced from the splitting during encoding and decoding, the channel loss and multiple access interference is presented. Results show that under average effective power constraint optical CDMA system using SIC scheme with


2021 ◽  
Vol 13 (6) ◽  
pp. 93-108
Author(s):  
Vu Tran Hoang Son ◽  
Dang Le Khoa

The Multiple-input multiple-output (MIMO) technique combined with non-orthogonal multiple access (NOMA) has been considered to enhance total system performance. This paper studies the bit error rate of two-user power-domain NOMA systems using successive interference cancellation receivers, with zeroforcing equalization over quasi-static Rayleigh fading channels. Successive interference cancellation technique at NOMA receivers has been the popular research topic due to its simple implementation, despite its vulnerability to error propagation. Closed-form expressions are derived for downlink NOMA in single-input single-output and uncorrelated quasi-static MIMO Rayleigh fading channel. Analytical results are consolidated with Monte Carlo simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muneeb Ahmad ◽  
Sobia Baig ◽  
Hafiz Muhammad Asif ◽  
Kaamran Raahemifar

The fourth Industrial Revolution is expected to lead to an era of technological innovation and digitization that would require connectivity by the users, anywhere and anytime. The fifth generation of wireless communication systems and the technologies therein are being explored to cater to high connectivity needs that encompass high data rates, very low latencies, energy-efficient systems, etc. A multiuser environment is anticipated that would require multiple access techniques, such as Nonorthogonal Multiple Access (NOMA). The user data in the power domain NOMA is superimposed, at the transmitter base station, which is in turn subjected to Successive Interference Cancellation at the user end. In the multiuser downlink, the desired user’s signal is subjected to imperfect SIC due to incomplete cancellation of the undesired user’s signal. Pulse-shaping of NOMA symbols using wavelet transform is proposed to mitigate the multiuser interference due to imperfect SIC. Closed-form symbol error rate (SER) expression is derived for the wavelet NOMA system for a three-user scenario. Analytical results show that wavelet transform pulse-shaped NOMA performs better compared to Fourier transform pulse-shaped NOMA symbols in mitigating SIC and thereby minimize the residual error due to imperfect SIC.


2021 ◽  
Author(s):  
Navideh Ghafouri Jeshvaghani ◽  
Naser Movahhedinia ◽  
Mohammad Reza Khayyambashi

Abstract Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for resource allocation improvement in the 5th generation of cellular networks. Compared to orthogonal multiple access techniques (OMA), NOMA offers extra benefits, including greater spectrum efficiency which is provided through multiplexing users in the transmission power domain while using the same spectrum resources non-orthogonally. Even though NOMA uses Successive Interference Cancellation (SIC) to repeal the interference among users, user grouping has shown to have a substantial impact on its performance. This prformance improvement can appear in different parameters such as system capacity, rate, or the power consumption. In this paper, we propose a novel user grouping scheme for sum-rate maximization which increases the sum-rate up to 25 percent in comparison with two authenticated recent works. In addition to being matrix-based and having a polynomial time complexity, the proposed method is also able to cope with users experiencing different channel gains and powers in different sub-bands.


Sign in / Sign up

Export Citation Format

Share Document