scholarly journals Determination of Formation Time of Calcareous Cements in Marine Sandstone and Their Influence on Hydrocarbon Accumulation: A Case Study of the Carboniferous Donghe Sandstone in the Hadexun Oilfield, Tarim Basin

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jingwei Cui ◽  
Yongfu Liu

Based on core observations, the microheterogeneity, diagenetic features, diagenetic mineral compositions, and stable isotopes of cements in the calcareous interlayers in the Donghe sandstone were studied by polarizing microscopy, cathodoluminescence microscopy, X-ray diffractometry, isotope ratio mass spectrometry, and other techniques. By determining the proportions of cements of two phases by a statistical method and their clumped isotope values by an end-member method, the multiphase calcareous cementation was shown to be the major contributor to densification. Cluster isotopes revealed that the average formation temperatures of calcareous cements in phases II and III of cementation were 45–50°C and 80–90°C, indicating that they were products of the A and B phases during early diagenesis, respectively. According to the homogenization temperatures of coeval salt-water inclusions associated with hydrocarbon inclusions, which range from 100°C to 130°C, basin modeling revealed that the basin underwent mainly one stage of hydrocarbon charging during 8–5 Ma in the Miocene period. The cements of the two phases in the oil-free calcareous interlayers in the Donghe sandstone, which are the main controlling factor of the oil-water distribution in the reservoir at present, formed much earlier than the oil filling in the oil-bearing sandstone.


2015 ◽  
Vol 89 (3) ◽  
pp. 876-886 ◽  
Author(s):  
WANG Bin ◽  
FENG Yong ◽  
ZHAO Yongqiang ◽  
ZHOU Yushuang ◽  
LUO Yu ◽  
...  


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.



2019 ◽  
Vol 70 (11) ◽  
pp. 3903-3907
Author(s):  
Galina Marusic ◽  
Valeriu Panaitescu

The paper deals with the issues related to the pollution of aquatic ecosystems. The influence of turbulence on the transport and dispersion of pollutants in the mentioned systems, as well as the calculation of the turbulent diffusion coefficients are studied. A case study on the determination of turbulent diffusion coefficients for some sectors of the Prut River is presented. A new method is proposed for the determination of the turbulent diffusion coefficients in the pollutant transport equation for specific sectors of a river, according to the associated number of P�clet, calculated for each specific area: the left bank, the right bank and the middle of the river.





Author(s):  
Maria Ricciardi ◽  
Concetta Pironti ◽  
Oriana Motta ◽  
Rosa Fiorillo ◽  
Federica Camin ◽  
...  

AbstractIn this paper, we analysed the efflorescences present in the frescos of a monumental complex named S. Pietro a Corte situated in the historic centre of Salerno (Campania, Italy). The groundwater of the historic centre is fed by two important streams (the Rafastia and the Fusandola) that can be the sources of water penetration. The aims of this work are to (i) identify the stream that reaches the ancient frigidarium of S. Pietro a Corte and (ii) characterize the efflorescences on damaged frescos in terms of chemical nature and sources. In order to accomplish the first aim, the water of the Rafastia river (7 samples) and the water of the Fusandola river (7 samples) were analysed and compared with the water of a well of the Church (7 samples). The ionic chromatography measurements on the water samples allowed us to identify the Rafastia as the river that feeds the ancient frigidarium of S. Pietro a Corte. To investigate the nature and the origin of the efflorescences (our second aim), anionic chromatography analyses, X-ray diffraction measurements, and the isotopic determination of nitrogen were performed on the efflorescences (9 samples) and the salts recovered from the well (6 samples). Results of these analyses show that efflorescences are mainly made of potassium nitrate with a δ15N value of + 9.3 ± 0.2‰. Consequently, a plausible explanation for their formation could be the permeation of sewage water on the walls of the monumental complex.



2021 ◽  
Vol 415 ◽  
pp. 128975
Author(s):  
Xiangqian Li ◽  
Mengqing Li ◽  
Yuze Chen ◽  
Gongxi Qiao ◽  
Qian Liu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document