stable hydrogen isotope
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3477
Author(s):  
Caralie T. Brewer ◽  
William A. Rauch-Davis ◽  
Erin E. Fraser

Mortality of migratory bat species at wind energy facilities is a well-documented phenomenon, and mitigation and management are partially constrained by the current limited knowledge of bat migratory movements. Analyses of biochemical signatures in bat tissues (“intrinsic markers”) can provide information about the migratory origins of individual bats. Many tissue samples for intrinsic marker analysis may be collected from living and dead bats, including carcasses collected at wind energy facilities. In this paper, we review the full suite of available intrinsic marker analysis techniques that may be used to study bat migration, with the goal of summarizing the current literature and highlighting knowledge gaps and opportunities. We discuss applications of the stable isotopes of hydrogen, oxygen, nitrogen, carbon, sulfur; radiogenic strontium isotopes; trace elements and contaminants; and the combination of these markers with each other and with other extrinsic markers. We further discuss the tissue types that may be analyzed for each and provide a synthesis of the generalized workflow required to link bats to origins using intrinsic markers. While stable hydrogen isotope techniques have clearly been the leading approach to infer migratory bat movement patterns across the landscape, here we emphasize a variety of lesser used intrinsic markers (i.e., strontium, trace elements, contaminants) that may address new study areas or answer novel research questions.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 202
Author(s):  
Rien E. van Wijk ◽  
Yahkat Barshep ◽  
Keith A. Hobson

The measurement of stable hydrogen isotope ratios (δ2H) in animal tissues is a popular means of inferring spatial origins and migratory connections. However, the use of this isotope to infer diet and potentially trophic position remains poorly understood, especially in non-aquatic terrestrial ecosystems. In many animal communities, tissue δ15N values are strongly associated with trophic position. Correlations between tissue δ2H and δ15N are expected, then, if δ2H is affected by trophic enrichment of 2H. In addition, within sites, we would expect higher tissue δ2H values in insectivorous species compared to granivores or nectarivores. We tested these hypotheses for two resident avian communities in Nigeria consisting of 30 species representing a range of dietary guilds (granivores, frugivores, nectarivores, omnivores, insectivores) by comparing feather δ2H, δ15N and δ13C values. We found considerable isotopic overlap among all guilds except granivores, with no clear pattern of enrichment in 2H with trophic position. However, at one of our sites (open scrubland), feather δ2H was positively correlated with feather δ15N (R2 = 0.30) compared to a closed canopy forest site (R2 = 0.09). Our results indicate weak evidence for predictable trophic enrichment in 2H in terrestrial environments and indicate that controlled studies are now required to definitively elucidate the behavior of H isotopes in terrestrial food webs.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Camila Gómez ◽  
Keith A. Hobson ◽  
Nicholas J. Bayly ◽  
Kenneth V. Rosenberg ◽  
Andrea Morales-Rozo ◽  
...  

Temporal variation in the connectivity of populations of migratory animals has not been widely documented, despite having important repercussions for population ecology and conservation. Because the long-distance movements of migratory animals link ecologically distinct and geographically distant areas of the world, changes in the abundance and migratory patterns of species may reflect differential drivers of demographic trends acting over various spatial scales. Using stable hydrogen isotope analyses ( δ 2 H) of feathers from historical museum specimens and contemporary samples obtained in the field, we provide evidence for an approximately 600 km northward shift over 45 years in the breeding origin of a species of songbird of major conservation concern (blackpoll warbler, Setophaga striata ) wintering in the foothills of the eastern Andes of Colombia. Our finding mirrors predictions of range shifts for boreal-breeding species under warming climate scenarios and habitat loss in the temperate zone, and underscores likely drivers of widespread declines in populations of migratory birds. Our work also highlights the value of natural history collections to document the effects of global change on biodiversity.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Simon D. Kelly ◽  
Aiman Abrahim ◽  
Peter Rinke ◽  
Andrew Cannavan

AbstractAn improved procedure for determining 2H/1H isotope ratios, using gas chromatography-isotope ratio mass spectrometry, has been used to detect the addition of exogenous C4-plant-derived sugars to pineapple juice. Isotopic techniques are commonly used to identify the addition of low-cost sugars to fruit juices and are difficult to subvert as it is not economically viable to change the isotopic ratios of the sugars. However, the addition of cane sugar to pineapple juice has presented a significant challenge that is only detected by site-specific 13C analysis of the methyl and methylene positions of ethanol derived from pineapple sugars, measured by nuclear magnetic resonance. This new GC-IRMS-based procedure utilises the trifluoroacetate derivative of sucrose to allow direct measurement of the carbon-bound non-exchangeable hydrogen. This provides advantages over alternative isotopic methods in terms of analysis time and sensitivity. This feasibility study has demonstrated the potential to reliably differentiate between authentic pineapple juices and those adulterated with commercial beet and cane sucrose.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 102
Author(s):  
Keith A. Hobson ◽  
Jackson W. Kusack ◽  
Blanca X. Mora-Alvarez

Determining migratory connectivity within and among diverse taxa is crucial to their conservation. Insect migrations involve millions of individuals and are often spectacular. However, in general, virtually nothing is known about their structure. With anthropogenically induced global change, we risk losing most of these migrations before they are even described. We used stable hydrogen isotope (δ2H) measurements of wings of seven species of butterflies (Libytheana carinenta, Danaus gilippus, Phoebis sennae, Asterocampa leilia, Euptoieta claudia, Euptoieta hegesia, and Zerene cesonia) salvaged as roadkill when migrating in fall through a narrow bottleneck in northeast Mexico. These data were used to depict the probabilistic origins in North America of six species, excluding the largely local E. hegesia. We determined evidence for long-distance migration in four species (L. carinenta, E. claudia, D. glippus, Z. cesonia) and present evidence for panmixia (Z. cesonia), chain (Libytheana carinenta), and leapfrog (Danaus gilippus) migrations in three species. Our investigation underlines the utility of the stable isotope approach to quickly establish migratory origins and connectivity in butterflies and other insect taxa, especially if they can be sampled at migratory bottlenecks. We make the case for a concerted effort to atlas butterfly migrations using the stable isotope approach.


Author(s):  
Keith A Hobson ◽  
Hiroshi Jinguji ◽  
Yuta Ichikawa ◽  
Jackson W Kusack ◽  
R Charles Anderson

Abstract The globe skimmer dragonfly, Pantala flavescens Fabricius (Odonata: Libellulidae), is a long-distance migrant, well adapted to exploiting ephemeral waterbodies. This species occurs in Japan every summer, but overwintering has only been recorded on subtropical Ishigaki Island. It is not known from where the summer immigrants originate, nor what proportion of the globe skimmers seen in Japan are of local origin. We analyzed stable hydrogen isotope (δ 2H) composition of wings of 189 P. flavescens captured at six sites in Japan from August to September in 2016 (n = 57) and from April to November in 2017 (n = 132). We determined that the majority of individuals were immigrants. Individuals of probable Japanese origin occurred only later in the year and were of lower mass on average than immigrants. Immigrants potentially originated from a broad area as far west as northern India and the Tibetan Plateau and, especially late in the season, as near as northcentral China and the Korean peninsula. However, for April samples, the most parsimonious interpretation suggested southern origins, in northern Myanmar to southern China, or possibly Borneo-Sulawesi. Our investigation underlines the power of combining stable isotope data with other information such as wind speed and direction, arrival dates, and body mass to estimate origins and to understand the life history of this and other insects.


2020 ◽  
Vol 7 (1) ◽  
pp. 27-41
Author(s):  
Caitlin J. Campbell ◽  
Matthew C. Fitzpatrick ◽  
Hannah B. Vander Zanden ◽  
David M. Nelson

AbstractProbability-of-origin maps deduced from stable isotope data are important for inferring broad-scale patterns of animal migration, but few resources and tools for interpreting and validating these maps exist. For example, quantitative tools for comparing multiple probability-of-origin maps do not exist, and many existing approaches for geographic assignment of individuals have not been validated or compared with respect to precision and accuracy. To address these challenges, we created and analyzed probability-of-origin maps using stable hydrogen isotope values from known-origin individuals of three species of migratory bat. We used a metric of spatial overlap to group individuals by areas of origin without a priori knowledge of such regions. The metric of spatial similarity allowed for quantitative comparison of geographic origins and grouping of individuals with similar origins. We then compared four approaches for inferring origins (cumulative-sum, odds-ratio, quantile-only, and quantile-simulation) across a range of thresholds and probable minimum distance traveled. The accuracy of geographic origins and minimum distance traveled varied across species at most threshold values for most approaches. The cumulative-sum and quantile-simulation approaches had generally higher precision at a given level of accuracy than the odds-ratio and quantile-only approaches, and many threshold values were associated with a relatively high degree (> 300 km) of variation in minimum distance traveled. Overall, these results reinforce the importance of validating assignment techniques with known-origin individuals when possible. We present the tools discussed as part of an R package, ‘isocat’ (“Isotope Origin Clustering and Assignment Tools”).


2020 ◽  
Vol 33 (2) ◽  
pp. 94-101
Author(s):  
Elena V. Uspenskaya ◽  
Tatyana V. Pleteneva ◽  
Anton V. Syroeshkin ◽  
Ilaha V. Kazimova ◽  
Tatyana E. Elizarova ◽  
...  

AbstractIn the present work, we provide the results of defining by utilizing Laser diffraction spectroscopy, the kinetic isotopic effect of solvent and constant of dissolution rate κ, s−1 of аn active pharmaceutical ingredient (API) in water with a different content of a stable _2^1{\rm{H}} isotope on the basis of the laws of first-order kinetics. This approach is based on the analysis of the light scattering profile that occurs when the particles of the dispersion phase in the aquatic environment are covered with a collimated laser beam. For the first time, the dependence of the rate of dissolution is demonstrated not only on the properties of the pharmaceutical substance itself (water solubility mg/ml, octanol–water partition coefficient log P oct/water, topological polar surface area, Abraham solvation parameters, the lattice type), but also on the properties of the solvent, depending on the content of stable hydrogen isotope. We show that the rate constant of dissolution of a sparingly hydrophobic substance moxifloxacin hydrochloride (MF · HCl) in the Mili-Q water is: k=1.20±0.14∙10−2 s−1 at 293.15 K, while in deuterium depleted water, it is k=4.24±0.4∙10−2 s−1. Consequently, we have established the development of the normal kinetic isotopic effect (kH/kD >1) of the solvent. This effect can be explained both by the positions of the difference in the vibrational energy of zero levels in the initial and transition states, and from the position of water clusters giving volumetric effects of salvation, depending on the ratio D/H. The study of kinetic isotopic effects is a method that gives an indication of the mechanism of reactions and the nature of the transition state. The effect of increasing the dissolution of the API, as a function of the D/H ratio, we have discovered, can be used in the chemical and pharmaceutical industries in the study of API properties and in the drug production through improvement in soluble and pharmacokinetic characteristics.


Sign in / Sign up

Export Citation Format

Share Document