scholarly journals A New Support Vector Machine Based on Convolution Product

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wei-Chang Yeh ◽  
Yunzhi Jiang ◽  
Shi-Yi Tan ◽  
Chih-Yen Yeh

The support vector machine (SVM) and deep learning (e.g., convolutional neural networks (CNNs)) are the two most famous algorithms in small and big data, respectively. Nonetheless, smaller datasets may be very important, costly, and not easy to obtain in a short time. This paper proposes a novel convolutional SVM (CSVM) that has the advantages of both CNN and SVM to improve the accuracy and effectiveness of mining smaller datasets. The proposed CSVM adapts the convolution product from CNN to learn new information hidden deeply in the datasets. In addition, it uses a modified simplified swarm optimization (SSO) to help train the CSVM to update classifiers, and then the traditional SVM is implemented as the fitness for the SSO to estimate the accuracy. To evaluate the performance of the proposed CSVM, experiments were conducted to test five well-known benchmark databases for the classification problem. Numerical experiments compared favorably with those obtained using SVM, 3-layer artificial NN (ANN), and 4-layer ANN. The results of these experiments verify that the proposed CSVM with the proposed SSO can effectively increase classification accuracy.




2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.



Phishing is one among the luring procedures used by phishing attackers in the means to abuse the personal details of clients. Phishing is earnest cyber security issue that includes facsimileing legitimate website to apostatize online users so as to purloin their personal information. Phishing can be viewed as special type of classification problem where the classifier is built from substantial number of website's features. It is required to identify the best features for improving classifiers accuracy. This study, highlights on the important features of websites that are used to classify the phishing website and form the legitimate ones by presenting a scheme Decision Tree Least Square Twin Support Vector Machine (DT-LST-SVM) for the classification of phishing website. UCI public domain benchmark website phishing dataset was used to conduct the experiment on the proposed classifier with different kernel function and calculate the classification accuracy of the classifiers. Computational results show that DT-LST-SVM scheme yield the better classification accuracy with phishing websites classification dataset



2014 ◽  
Vol 668-669 ◽  
pp. 1147-1151
Author(s):  
Wen Bin Cui ◽  
Shao Min Mu ◽  
Chuan Huan Yin ◽  
Qing Bo Hao

Local support vector machine gives the feature same weight in classification. In fact, many datasets have some weak or irrelevant features related to the classification. Thus giving features same weight may reduce the classification accuracy of local support vector machine.This paper puts forward a new local support vector machine that the feature weight is optimized by PSO (Particle Swarm Optimization), it is tested on the international standard UCI data sets and the images of tree taxonomy data sets, the results show that the accuracy of the algorithm we proposed is better than the general local support vector machine.



Author(s):  
Fan Xu ◽  
Peter Wai Tat TSE ◽  
Yan-Jun Fang ◽  
Jia-Qi Liang

A method based on compound multiscale permutation entropy, support vector machine, and particle swarm optimization for roller bearings fault diagnosis was presented in this study. Firstly, the roller bearings vibration signals under different conditions were decomposed into permutation entropy values by the multiscale permutation entropy and compound multiscale permutation entropy methods. The compound multiscale permutation entropy model combined the different graining sequence information under each scale factor. The average value of each scale factor was regarded as the final entropy value in the compound multiscale permutation entropy model. The compound multiscale permutation entropy model suppressed the shortcomings of poor stability caused by the length of the original signals in the multiscale permutation entropy model. Validity and accuracy are considered in the numerical experiments, and then compared with the computational efficiency of the multiscale permutation entropy method. Secondly, the entropy values of the multiscale permutation entropy/compound multiscale permutation entropy under different scales are regarded as the input of the particle swarm optimization–support vector machine models for fulfilling the fault identification, the classification accuracy is used to verify the effectiveness of the multiscale permutation entropy/compound multiscale permutation entropy with particle swarm optimization–support vector machine. Finally, the experimental results show that the classification accuracy of the compound multiscale permutation entropy model is higher than that of the multiscale permutation entropy.



2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.



Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.



Sign in / Sign up

Export Citation Format

Share Document