scholarly journals Crack Identification Method of Steel Fiber Reinforced Concrete Based on Deep Learning: A Comparative Study and Shared Crack Database

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Ding ◽  
Shuang-Xi Zhou ◽  
Hai-Qiang Yuan ◽  
Yuan Pan ◽  
Jing-Liang Dong ◽  
...  

As a common disease of concrete structure in engineering, cracks mainly lead to durability problems such as steel corrosion, rain erosion, and protection layer peeling, and then the building gets destroyed. In order to detect the cracks of concrete structure in time, the bending test of steel fiber reinforced concrete is carried out, and the pictures of concrete cracks are obtained. Furthermore, the crack database is expanded by the migration learning method and the crack database is shared on the Baidu online disk. Finally, a concrete crack identification model based on YOLOv4 and Mask R-CNN is established. In addition, the improved Mask R-CNN method is proposed in order to improve the prediction accuracy based on the Mask R-CNN. The results show that the average prediction accuracy of concrete crack identification is 82.60% based on the YOLO v4 method. The average prediction accuracy of concrete crack identification is 90.44% based on the Mask R-CNN method. The average prediction accuracy of concrete crack identification is 96.09% based on the improved Mask R-CNN method.

2018 ◽  
Vol 163 ◽  
pp. 02003 ◽  
Author(s):  
Julita Krassowska ◽  
Marta Kosior-Kazberuk

Experimental tests were carried out to assess the failure model of steel fiber reinforced concrete beams. Experimental research was focused on observing changes in the behavior of the tested elements depending on the amount of shear reinforcement and the fiber. Model two-span beams with a cross-section of 80x180 mm and a length of 2000 mm were tested. The beams had varied stirrup spacing. The following amounts of steel fibres in concrete were used: 78.5 kg/m3 (1.0%) i 118 kg/m3 (1.5%). Concrete beams without fibres were examined at the same time. The beams were loaded in a five-point bending test until they were destroyed. Shear or bending capacity of the element was observed. Fibre reinforced concrete beams were not destroyed rapidly, but they kept their shape consistent under load. Larger number of diagonal cracks with a smaller width were observed in fibre reinforced concrete beams. Failure of concrete beams without fibres was rapid, with a characteristic brittle cracking. Steel fibres revealed the ability to transfer significant shear stress after cracking in comparison to plain concrete.


Author(s):  
Yuechen Yang ◽  
Mohammed Ismail ◽  
Stavroula Pantazopoulou ◽  
Dan Palermo

Recent developments in the area of Ultra-High-Performance Steel Fiber Reinforced Concrete (UHP-SFRC) enables reduction in steel reinforcement, and has led to enhanced ductility and toughness of structural components owing to its resilient tensile behaviour. This paper presents the results of an experimental study conducted to investigate the tensile behaviour of UHP-SFRC. Four commercial mixes and two in-house mixes were evaluated using the procedures prescribed in the 2018 edition of Annex 8.1 of CSA-S6. Tensile strength of UHP-SFRC was quantified and correlated through the direct tension test, splitting test, inverse analysis of four-point bending test using either code expressions or nonlinear finite element analysis, and a calibrated empirical expression that links this property to the cylinder compressive strength. In addition, the effect of important parameters on flexural strength including casting methodology, volumetric ratio of steel fibers, and aspect ratio (shear span to depth ratio) of bending prisms have been assessed.


2011 ◽  
Vol 243-249 ◽  
pp. 108-111 ◽  
Author(s):  
Yuan Yao Miao ◽  
Di Tao Niu ◽  
Yan Wang

Durability of concrete structure due to carbonation problem has attracted worldwide attention. By studying on the performance of steel fiber reinforced concrete carbonation, simulations CO2corrosion environment was simulated. The impacts of the change law of carbonation depth of steel fiber reinforced concrete with water cement ratio (0.35,0.45,0.55), as well as steel fiber content (0%, 0.5%, 1.0%, 1.5% , 2.0%), pouring surface and age, on concrete carbonation depth were studied. Steel fiber reinforced concrete carbonation performance improvement role was analyzed. Thus, providing a experimental basis that can be used in the design and analysis of the durability of steel fiber reinforced concrete structure.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuanxun Zheng ◽  
Xiaolong Wu ◽  
Guangxian He ◽  
Qingfang Shang ◽  
Jianguo Xu ◽  
...  

As a kind of important engineering material, steel fiber-reinforced concrete was used widely in civil engineering. Up to now, steel fiber-reinforced concrete was usually produced by the traditional mixing method. For the reason of uniform distribution of fiber, the reinforcement of mechanical properties of concrete was inadequately performed. In this paper, C50 steel fiber-reinforced concrete and C60 steel fiber-reinforced concrete were manufactured by traditional mixing and vibratory mixing methods, respectively, and then, the cube compression test, flexural test, splitting tensile test, and the bending test were carried out. The reinforcement effects of mechanical properties were analyzed by comparing the traditional mixing and vibratory mixing methods. The results show that vibratory mixing can effectively improve the distribution of steel fibers in concrete and can increase the density of steel fiber concrete, and therefore, it effectively improves the mechanical properties of steel fiber-reinforced concrete when compared to the traditional mixing method.


2018 ◽  
Vol 37 (2) ◽  
pp. 127 ◽  
Author(s):  
Markus Kronenberger ◽  
Katja Schladitz ◽  
Bernd Hamann ◽  
Hans Hagen

This paper tackles the non-trivial image-processing task to segment hook-ended fibers in three-dimensional images. For this purpose, a novel segmentation method is presented that relies on the following observation: For a single fiber the configurations of principal curvatures that can occur on its surface are limited. Deviations from these configurations indicate potential overlaps of fibers. The method that was developed based on this observation is used to separate several simulated clusters of touching fibers as a proof-of-concept. Further, it is applied to two images of cracked steel fiber reinforced concrete specimens arising from a 4-point bending test. The method's performance is compared to manual separation. Overall, we can state that the proposed method yields satisfying results when data meets the following criteria: Low fiber volume density, circular fiber cross section and sufficient spatial resolution of fiber-fiber contacts.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 392 ◽  
Author(s):  
Jacek Domski ◽  
Mateusz Zakrzewski

The article describes the selected methods of calculating the deflection of steel fiber reinforced concrete beams. Additionally, the results of the study on the deflection of steel fiber reinforced concrete beams based on waste sand are presented. This paper compares deflections measured during the four point bending test of the steel fiber reinforced, waste sand fine aggregate concrete beam with values determined in accordance with Eurocode 2, the proposal of Tan, Paramasivam, and Tan, the modified method of Alsayed, Bywalski, and Kaminski, and Amin, Foster, and Kaufmann’s method. The analysis conducted shows that the best accordance with the study and calculation results was obtained by using the modified Alsayed method.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Sign in / Sign up

Export Citation Format

Share Document