scholarly journals Research on Dual Mode Target Detection Algorithm for Embedded Platform

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Li Zhang ◽  
Shaoqiang Wang ◽  
Hongwei Sun ◽  
Yifan Wang

Aiming at the problem that the embedded platform cannot meet the real-time detection of multisource images, this paper proposes a lightweight target detection network MNYOLO (MobileNet-YOLOv4-tiny) suitable for embedded platforms using deep separable convolution instead of standard convolution to reduce the number of model parameters and calculations; at the same time, the visible light target detection model is used as the pretraining model of the infrared target detection model and the infrared target data set collected on the spot is fine-tuned to obtain the infrared target detection model. On this basis, a decision-level fusion detection model is obtained to realize the complementary information of infrared and visible light multiband information. The experimental results show that it has a more obvious advantage in detection accuracy than the single-band target detection model while the decision-level fusion target detection model meets the real-time requirements and also verifies the effectiveness of the above algorithm.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 213 ◽  
Author(s):  
Jian Han ◽  
Yaping Liao ◽  
Junyou Zhang ◽  
Shufeng Wang ◽  
Sixian Li

Target detection plays a key role in the safe driving of autonomous vehicles. At present, most studies use single sensor to collect obstacle information, but single sensor cannot deal with the complex urban road environment, and the rate of missed detection is high. Therefore, this paper presents a detection fusion system with integrating LiDAR and color camera. Based on the original You Only Look Once (YOLO) algorithm, the second detection scheme is proposed to improve the YOLO algorithm for dim targets such as non-motorized vehicles and pedestrians. Many image samples are used to train the YOLO algorithm to obtain the relevant parameters and establish the target detection model. Then, the decision level fusion of sensors is introduced to fuse the color image and the depth image to improve the accuracy of the target detection. Finally, the test samples are used to verify the decision level fusion. The results show that the improved YOLO algorithm and decision level fusion have high accuracy of target detection, can meet the need of real-time, and can reduce the rate of missed detection of dim targets such as non-motor vehicles and pedestrians. Thus, the method in this paper, under the premise of considering accuracy and real-time, has better performance and larger application prospect.


2017 ◽  
Author(s):  
Young-Rae Cho ◽  
Sung-Hyuk Yim ◽  
Hyun-Woong Cho ◽  
Jin-Ju Won ◽  
Woo-Jin Song ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 2522-2527

In this paper, we design method for recognition of fingerprint and IRIS using feature level fusion and decision level fusion in Children multimodal biometric system. Initially, Histogram of Gradients (HOG), Gabour and Maximum filter response are extracted from both the domains of fingerprint and IRIS and considered for identification accuracy. The combination of feature vector of all the possible features is recommended by biometrics traits of fusion. For fusion vector the Principal Component Analysis (PCA) is used to select features. The reduced features are fed into fusion classifier of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Navie Bayes(NB). For children multimodal biometric system the suitable combination of features and fusion classifiers is identified. The experimentation conducted on children’s fingerprint and IRIS database and results reveal that fusion combination outperforms individual. In addition the proposed model advances the unimodal biometrics system.


Sign in / Sign up

Export Citation Format

Share Document