scholarly journals RF Jamming Classification Using Relative Speed Estimation in Vehicular Wireless Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dimitrios Kosmanos ◽  
Dimitrios Karagiannis ◽  
Antonios Argyriou ◽  
Spyros Lalis ◽  
Leandros Maglaras

Wireless communications are vulnerable against radio frequency (RF) interference which might be caused either intentionally or unintentionally. A particular subset of wireless networks, Vehicular Ad-hoc NETworks (VANET), which incorporate a series of safety-critical applications, may be a potential target of RF jamming with detrimental safety effects. To ensure secure communications between entities and in order to make the network robust against this type of attacks, an accurate detection scheme must be adopted. In this paper, we introduce a detection scheme that is based on supervised learning. The k-nearest neighbors (KNN) and random forest (RaFo) methods are used, including features, among which one is the metric of the variations of relative speed (VRS) between the jammer and the receiver. VRS is estimated from the combined value of the useful and the jamming signal at the receiver. The KNN-VRS and RaFo-VRS classification algorithms are able to detect various cases of denial-of-service (DoS) RF jamming attacks and differentiate those attacks from cases of interference with very high accuracy.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dimitrios Kosmanos ◽  
Antonios Argyriou ◽  
Leandros Maglaras

Vehicular Ad Hoc Networks (VANETs) aim at enhancing road safety and providing a comfortable driving environment by delivering early warning and infotainment messages to the drivers. Jamming attacks, however, pose a significant threat to their performance. In this paper, we propose a novel Relative Speed Estimation Algorithm (RSEA) of a moving vehicle that approaches a transmitter (Tx)-receiver (Rx) pair that interferes with their radio frequency (RF) communication by conducting a denial of service (DoS) attack. Our scheme is completely passive and uses a pilot-based received signal without hardware or computational cost to, firstly, estimate the combined channel between the transmitter-receiver and jammer-receiver and, secondly, to estimate the jamming signal and the relative speed between the jammer-receiver using the RF Doppler shift. Moreover, the relative speed metric exploits the angle of projection (AOP) of the speed vector of the jammer in the axis of its motion in order to form a two-dimensional representation of the geographical area. Our approach can effectively be applied for any form of the jamming signal and is proven to have quite accurate performance, with a mean absolute error (MAE) value of approximately 10% compared to the optimal zero MAE value under different jamming attack scenarios.


Author(s):  
Rajendra V. Boppana ◽  
Suresh Chalasani

Multihop wireless networks based on WiFi technology offer flexible and inexpensive networking possibilities. Applications of multihop wireless networks range from personal networks within consumer homes to citywide departmental networks to wide-area vehicular ad hoc networks. In this chapter, we focus on multihop ad hoc networks with communication among user devices and access points, where available, without the restriction that the user devices need to be within the radio range of access points. We first describe pure WiFi networks and their limitations. Next we discuss mixed networks based on WiFi and other wired and wireless technologies to provide robust city-scale networks. This chapter also explores security issues and vulnerabilities of wireless networks. An emerging application of WiFi ad hoc networks-RFID (radio frequency identification) networks based on the WiFi technology for warehouses and large retail stores-is presented. This chapter also presents another emerging application of WiFi-based networks: vehicular ad hoc networks for automobiles.


2011 ◽  
pp. 155-174
Author(s):  
Rajendra V. Boppana ◽  
Suresh Chalasani

Multihop wireless networks based on WiFi technology offer flexible and inexpensive networking possibilities. Applications of multihop wireless networks range from personal networks within consumer homes to citywide departmental networks to wide-area vehicular ad hoc networks. In this chapter, we focus on multihop ad hoc networks with communication among user devices and access points, where available, without the restriction that the user devices need to be within the radio range of access points. We first describe pure WiFi networks and their limitations. Next we discuss mixed networks based on WiFi and other wired and wireless technologies to provide robust city-scale networks. This chapter also explores security issues and vulnerabilities of wireless networks. An emerging application of WiFi ad hoc networks-RFID (radio frequency identification) networks based on the WiFi technology for warehouses and large retail stores-is presented. This chapter also presents another emerging application of WiFi-based networks: vehicular ad hoc networks for automobiles.


Author(s):  
Arif Sari

The varieties of studies in literature have been addressed by the researchers to solve security problems of Mobile Wireless Ad Hoc Networks (MANET) against denial of service (DoS) and distributed denial of service (DDoS) attacks. Attackers have proposed variety of methods and techniques by considering weaknesses of the wireless nature of the channels and specific characteristics of mobile wireless networks. This chapter evaluates variety of attacks proposed in the literature against MANET by classifying variety of security strategies and mechanisms proposed by the researchers. The algorithms are discussed and explained separately. All these attacks are classified in different categories and security strategies proposed by the researchers have been explained.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati ◽  
Binod Kumar Pattanayak

Due to many challenging issues in vehicular ad-hoc networks (VANETs), such as high mobility and network instability, this has led to insecurity and vulnerability to attacks. Due to dynamic network topology changes and frequent network re-configuration, security is a major target in VANET research domains. VANETs have gained significant attention in the current wireless network scenario, due to their exclusive characteristics which are different from other wireless networks such as rapid link failure and high vehicle mobility. In this are, the authors present a Secured and Safety Protocol for VANET (STVAN), as an intelligent Ad-Hoc On Demand Distance Vector (AODV)-based routing mechanism that prevents the Denial of Service attack (DoS) and improves the quality of service for secured communications in a VANET. In order to build a STVAN, the authors have considered a smart traffic environment in a smart city and introduced the concept of load balancing over VANET vehicles in a best effort manner. Simulation results reveal that the proposed STVAN accomplishes enhanced performance when compared with other similar protocols in terms of reduced delay, better packet delivery ratio, reasonable energy efficiency, increased network throughput and decreased data drop compared to other similar approach.


2012 ◽  
Vol 8 (1) ◽  
pp. 45-59 ◽  
Author(s):  
Sunwoo Kim ◽  
Won W. Ro

Network coding is a promising technique for data communications in wired and wireless networks. However, it places an additional computing overhead on the receiving node in exchange for the improved bandwidth. This paper proposes an FPGA-based reconfigurable and parallelized network coding decoder for embedded systems especially for vehicular ad hoc networks. In our design, rapid decoding process can be achieved by exploiting parallelism in the coefficient vector operations. The proposed decoder is implemented by using a modern Xilinx Virtex-5 device and its performance is evaluated considering the performance of the software decoding on various embedded processors. The performance on four different sizes of the coefficient matrix is measured and the decoding throughput of 18.3 Mbps for the size 16 × 16 and 6.5 Mbps for 128 × 128 has been achieved at the operating frequency of 64.5 MHz. Compared to the recent TEGRA 250 processor, the result obtained with128 × 128 coefficient matrix reaches up to 5.06 in terms of speedup.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Raenu Kolandaisamy ◽  
Rafidah Md Noor ◽  
Ismail Ahmedy ◽  
Iftikhar Ahmad ◽  
Muhammad Reza Z’aba ◽  
...  

Vehicular Ad Hoc Networks (VANETs) are rapidly gaining attention due to the diversity of services that they can potentially offer. However, VANET communication is vulnerable to numerous security threats such as Distributed Denial of Service (DDoS) attacks. Dealing with these attacks in VANET is a challenging problem. Most of the existing DDoS detection techniques suffer from poor accuracy and high computational overhead. To cope with these problems, we present a novel Multivariant Stream Analysis (MVSA) approach. The proposed MVSA approach maintains the multiple stages for detection DDoS attack in network. The Multivariant Stream Analysis gives unique result based on the Vehicle-to-Vehicle communication through Road Side Unit. The approach observes the traffic in different situations and time frames and maintains different rules for various traffic classes in various time windows. The performance of the MVSA is evaluated using an NS2 simulator. Simulation results demonstrate the effectiveness and efficiency of the MVSA regarding detection accuracy and reducing the impact on VANET communication.


Sign in / Sign up

Export Citation Format

Share Document