scholarly journals Unit Quaternion Description Method for Detecting High-Temperature Geothermal Well Drilling Conditions

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongyan Li ◽  
Pengtao Wang ◽  
Bin Liu ◽  
Xianyu Zhang ◽  
Hai Huang ◽  
...  

When the typically utilized method for detecting the drilling conditions of high-temperature geothermal wells is applied, the detection takes a long time, the detection results are inconsistent with the actual conditions, and there are problems such as low detection efficiency and large detection deviation. Therefore, a method for detecting the drilling conditions of high-temperature geothermal wells described by a unit quaternion is proposed. Based on quaternion theory, the quaternion model of the position and attitude is constructed to obtain the drilling attitude. According to the analysis results and the basic principle of kernel principal component analysis, a model is built to realize the detection of high-temperature geothermal well drilling conditions. The experimental results show that in many iterations, the time required is stable and lower than that of other comparison methods, and the detection errors are all lower than 10%. The proposed method has high detection efficiency and low detection errors.

2014 ◽  
Vol 953-954 ◽  
pp. 688-691
Author(s):  
Jia Nian Xu

The high temperature formation, strong abrasiveness, numerous fractures and caves are the main problems of high temperature geothermal well drilling, cementing. Cone bit teeth repeated impact tests show that bit life mainly affected by tooth shape, materials, solid tooth technology. Setting special materials around the teeth and adjusting the fitting wring will improve the life of cone bit teeth. Study of quartz sand amount and fineness ratio effect on cement high temperature compressive strength, permeability show that optimization of high temperature cement slurry can improve the high temperature leakage zone cementing sealing and long-term effectiveness.


2021 ◽  
Author(s):  
Torbjørn Vrålstad ◽  
Ragnhild Skorpa ◽  
Nils Opedal ◽  
Jelena Todorovic ◽  
Nicolaine Agofack ◽  
...  

Abstract Development of geothermal energy sources is an important contribution to ensure the “green shift” from fossil fuels to more sustainable sources of energy. Currently, most geothermal wells operate at temperature range of 150–300° C, but development of super-high temperature geothermal reservoirs may be needed to increase power production. However, the high temperature conditions to be found in such wells, up to 400–500 °C, are very challenging and may be detrimental for the integrity of well cement. In this paper, several cement integrity challenges for high temperature geothermal wells are reviewed, such as mechanical failures during well start-up and potential shut-in periods, and long-term issues caused by chemical alterations of the cement during high temperature exposure. Experimental tests have been performed with two different, potential geothermal well cement systems: a Portland-based system with silica flour and MicroSilica as additives, and a non-Portland, calcium aluminate cement system. For both cement systems, high temperature ageing tests have been performed at 500 °C for 8 weeks, where unconfined mechanical properties were determined before and after exposure. Furthermore, down-scaled tests of radial crack formation in casing-cement-rock samples have been performed, as simplified functions tests of cement sheath integrity during well start-up.


2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


Sign in / Sign up

Export Citation Format

Share Document