scholarly journals Detection of Aerobics Action Based on Convolutional Neural Network

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Siyu Zhang

To further improve the accuracy of aerobics action detection, a method of aerobics action detection based on improving multiscale characteristics is proposed. In this method, based on faster R-CNN and aiming at the problems existing in faster R-CNN, the feature pyramid network (FPN) is used to extract aerobics action image features. So, the low-level semantic information in the images can be extracted, and it can be converted into high-resolution deep-level semantic information. Finally, the target detector is constructed by the above-extracted anchor points so as to realize the detection of aerobics action. The results show that the loss function of the neural network is reduced to 0.2 by using the proposed method, and the accuracy of the proposed method can reach 96.5% compared with other methods, which proves the feasibility of this study.

2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaochao Fan ◽  
Hongfei Lin ◽  
Liang Yang ◽  
Yufeng Diao ◽  
Chen Shen ◽  
...  

Humor refers to the quality of being amusing. With the development of artificial intelligence, humor recognition is attracting a lot of research attention. Although phonetics and ambiguity have been introduced by previous studies, existing recognition methods still lack suitable feature design for neural networks. In this paper, we illustrate that phonetics structure and ambiguity associated with confusing words need to be learned for their own representations via the neural network. Then, we propose the Phonetics and Ambiguity Comprehension Gated Attention network (PACGA) to learn phonetic structures and semantic representation for humor recognition. The PACGA model can well represent phonetic information and semantic information with ambiguous words, which is of great benefit to humor recognition. Experimental results on two public datasets demonstrate the effectiveness of our model.


2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


2018 ◽  
Vol 24 (3) ◽  
pp. 467-489 ◽  
Author(s):  
MARC TANTI ◽  
ALBERT GATT ◽  
KENNETH P. CAMILLERI

AbstractWhen a recurrent neural network (RNN) language model is used for caption generation, the image information can be fed to the neural network either by directly incorporating it in the RNN – conditioning the language model by ‘injecting’ image features – or in a layer following the RNN – conditioning the language model by ‘merging’ image features. While both options are attested in the literature, there is as yet no systematic comparison between the two. In this paper, we empirically show that it is not especially detrimental to performance whether one architecture is used or another. The merge architecture does have practical advantages, as conditioning by merging allows the RNN’s hidden state vector to shrink in size by up to four times. Our results suggest that the visual and linguistic modalities for caption generation need not be jointly encoded by the RNN as that yields large, memory-intensive models with few tangible advantages in performance; rather, the multimodal integration should be delayed to a subsequent stage.


2020 ◽  
Author(s):  
Encarni Medina-Lopez

<p>The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m x 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82% and 84% for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 C and 0.4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.</p>


2010 ◽  
Vol 40-41 ◽  
pp. 599-603
Author(s):  
Jian Song

Aim at the complex background of eggplant image in the growing environment, a image segmentation method based on BP neural network was put forward. The EXG gray values of 3×3 neighborhood pixels were obtained as image features through by analyzing the eggplant image. 30 eggplant images were taken as training samples and results of manual segmentation images by Photoshop were regarded as teacher signals. The improved BP algorithm was used to train the parameter of the neural network. The effective parameter was achieved after 120 times of training. The result of this experiment showed that the eggplant fruit could be preferably segmented from the background by using BP neural network algorithm and it could totally meet the demands of the picking robots after further processing by way of combining mathematics morphology with median filtering.


Author(s):  
Subba Reddy Borra ◽  
G. Jagadeeswar Reddy ◽  
E. Sreenivasa Reddy

The uniqueness, firmness, public recognition, and its minimum risk of intrusion made fingerprint is an expansively used personal authentication metrics. Fingerprint technology is a biometric technique used to distinguish persons based on their physical traits. Fingerprint based authentication schemes are becoming increasingly common and usage of these in fingerprint security schemes, made an objective to the attackers. The repute of the fingerprint image controls the sturdiness of a fingerprint authentication system. We intend for an effective method for fingerprint classification with the help of soft computing methods. The proposed classification scheme is classified into three phases. The first phase is preprocessing in which the fingerprint images are enhanced by employing median filters. After noise removal histogram equalization is achieved for augmenting the images. The second stage is the feature Extraction phase in which numerous image features such as Area, SURF, holo entropy, and SIFT features are extracted. The final phase is classification using hybrid Neural for classification of fingerprint as fake or original. The neural network is unified with BAT algorithm for optimizing the weight factor.


2020 ◽  
Author(s):  
Stephan Rasp

Abstract. Over the last couple of years, machine learning parameterizations have emerged as a potential way to improve the representation of sub-grid processes in Earth System Models (ESMs). So far, all studies were based on the same three-step approach: first a training dataset was created from a high-resolution simulation, then a machine learning algorithms was fitted to this dataset, before the trained algorithms was implemented in the ESM. The resulting online simulations were frequently plagued by instabilities and biases. Here, coupled online learning is proposed as a way to combat these issues. Coupled learning can be seen as a second training stage in which the pretrained machine learning parameterization, specifically a neural network, is run in parallel with a high-resolution simulation. The high-resolution simulation is kept in sync with the neural network-driven ESM through constant nudging. This enables the neural network to learn from the tendencies that the high-resolution simulation would produce if it experienced the states the neural network creates. The concept is illustrated using the Lorenz 96 model, where coupled learning is able to recover the "true" parameterizations. Further, detailed algorithms for the implementation of coupled learning in 3D cloud-resolving models and the super parameterization framework are presented. Finally, outstanding challenges and issues not resolved by this approach are discussed.


Author(s):  
L. Xue ◽  
C. Liu ◽  
Y. Wu ◽  
H. Li

Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.


2020 ◽  
Vol 13 (5) ◽  
pp. 2185-2196
Author(s):  
Stephan Rasp

Abstract. Over the last couple of years, machine learning parameterizations have emerged as a potential way to improve the representation of subgrid processes in Earth system models (ESMs). So far, all studies were based on the same three-step approach: first a training dataset was created from a high-resolution simulation, then a machine learning algorithm was fitted to this dataset, before the trained algorithm was implemented in the ESM. The resulting online simulations were frequently plagued by instabilities and biases. Here, coupled online learning is proposed as a way to combat these issues. Coupled learning can be seen as a second training stage in which the pretrained machine learning parameterization, specifically a neural network, is run in parallel with a high-resolution simulation. The high-resolution simulation is kept in sync with the neural network-driven ESM through constant nudging. This enables the neural network to learn from the tendencies that the high-resolution simulation would produce if it experienced the states the neural network creates. The concept is illustrated using the Lorenz 96 model, where coupled learning is able to recover the “true” parameterizations. Further, detailed algorithms for the implementation of coupled learning in 3D cloud-resolving models and the super parameterization framework are presented. Finally, outstanding challenges and issues not resolved by this approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document