scholarly journals On the Network Strength of Meta-Aramid Fiber Suspension and Its Relationship to Formation

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Jiulong Sha ◽  
Jiawen Gao ◽  
Peiyao Wang ◽  
Qiannan Zhang ◽  
Xinyi Zhang ◽  
...  

Because of poor surface hydrophilicity, meta-aramid fibers readily form flocs by intertwining or interlacing, and this severely affects the uniformity of meta-aramid paper. To investigate the flocculation mechanism of meta-aramid fiber suspensions, the critical flocculant concentration, shear, and compressive network strength of meta-aramid fiber suspensions were examined. A hand sheet former was used to study the influence of the yielding properties of suspensions on the uniformity of meta-aramid paper, and the relationship between the formation index and rheological properties was determined. The results showed that the critical gel concentration ranged from 0.37 to 0.68 g/L, which was much lower than that of plant fiber suspensions. In addition, the compressive yield stress ( P y ) and shear yield stress ( τ y ) of the meta-aramid fiber suspensions were found to increase linearly and exponentially, respectively, with an increasing concentration, and the uniformity index of the paper sheets was found to depend on a power of τ y ⋅ P y . This provides an effective method for predicting paper sheet uniformity.

2020 ◽  
Vol 35 (2) ◽  
pp. 243-250
Author(s):  
Jiulong Sha ◽  
Yueyue Yang ◽  
Can Wang ◽  
Wei Li ◽  
Peng Lu ◽  
...  

AbstractThe degree of interactions between fibers and the tendency of fibers to form flocs play an important role in effective unit operation in pulp and paper industry. Mechanical treatments may damage the structure of the fiber cell wall and geometrical properties, and ultimately change the fiber-fiber interactions. In this study, the gel crowding number, compressive and shear yield stress of fibrillated acacia pulps were investigated, and the results showed that the gel crowding number of the refined pulp samples ranged from 8.7 to 10.7, which were much lower than that of un-refined pulps. As the concentration increased, both the compressive yield stress {P_{y}} and shear yield stress {\tau _{y}} of all suspensions increased accordingly, and the yield stress was found to depend on a power law of the crowding number. Moreover, the values of {\tau _{y}}/{P_{y}} were also examined and the variation of {\tau _{y}}/{P_{y}} became largely dependent on the fiber morphology and mass concentration.


AIChE Journal ◽  
1998 ◽  
Vol 44 (3) ◽  
pp. 538-544 ◽  
Author(s):  
Peter J. Scales ◽  
Stephen B. Johnson ◽  
Thomas W. Healy ◽  
Prakash C. Kapur

Author(s):  
Andrew C. Becnel ◽  
Norman M. Wereley

This research details a novel method of increasing the shear yield stress of magnetorheological (MR) fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, to achieve so-called compression-assisted aggregation. The contribution of both active gap separation and particle concentration are experimentally measured using a custom-built Searle cell magnetorheometer, which is a model device emulating a rotary Magnetorheological Energy Absorber (MREA). Characterization data from large (1 mm) and small (250 μm) gap geometries are compared to investigate the effect of the gap on yield stress by compression enhancement. Two MR fluids having different particle concentrations (32 vol% and 40 vol%) are also characterized to demonstrate the effect of solids loading on compression-assisted chain aggregation. Details of the experimental setup and method are presented, and a chain microstructure model is used to explain experimental trends. The torque resisted by practical rotary MREAs is directly related to the strength of the MR fluid used, as measured by the shear yield stress. This study demonstrates that it is feasible, utilizing the compression-enhanced shear yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalize by device volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.


2009 ◽  
Vol 26 (4) ◽  
pp. 048301 ◽  
Author(s):  
Zhang Min-Liang ◽  
Tian Yu ◽  
Jiang Ji-Le ◽  
Zhu Xu-Li ◽  
Meng Yong-Gang ◽  
...  

Polymer ◽  
1988 ◽  
Vol 29 (11) ◽  
pp. 1985-1989 ◽  
Author(s):  
C. Bauwens-Crowet ◽  
J-C. Bauwens

Author(s):  
Endra Dwi Purnomo ◽  
Ubaidillah Ubaidillah ◽  
Fitrian Imaduddin ◽  
Iwan Yahya ◽  
Saiful Amri Mazlan

<span>A novel design of magnetorheological fluids (MRF) based surround device in a loudspeaker system was studied in this article. The main objective of this research is to design a new surround device of the loudspeaker that can be easily controlled its damping. Therefore, it was predicted that the audio pressure level on the loudspeaker could be easily manipulated at a different sound source by applying a certain magnetic field. This function could not be reached using one conventional speaker system. Firstly, a set of an electromagnetic device containing MRF was designed to replace the conventional rubber surround. The magnetic circuit was then evaluated using the finite element method magnetics to study the flux distribution in the MRF area. The current was varied from 0.25 to 0.75 A by an interval of 0.25 A. The magnetic flux resulted from the simulation was then logged and used as the based value for predicting the change of shear yield stress. The base properties of the shear yield stress of the MRF against the magnetic flux was obtained from previous experimental result. Therefore, it was hopefully the prediction could be closed to the real system. Based on the simulation result, the shear yield stress varied from 43 to 49 Mpa or about 15 % increment. </span><span lang="IN">A simple experimental work was carried out. By applying particular direct current into the coil, the sound quality generated by the loudspeaker shows different values</span><span>.</span><span lang="IN"> Based on the preliminary experiment, the level of decibel decreased about 3 dB as the application of magnetic fields. The idea has been proven in this preliminary experimental evaluation.</span>


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4692
Author(s):  
Daniel Chuchala ◽  
Jakub Sandak ◽  
Kazimierz A. Orlowski ◽  
Tomasz Muzinski ◽  
Marcin Lackowski ◽  
...  

The modern wood converting processes consists of several stages and material drying belongs to the most influencing future performances of products. The procedure of drying wood is usually realized between subsequent sawing operations, affecting significantly cutting conditions and general properties of material. An alternative methodology for determination of mechanical properties (fracture toughness and shear yield stress) based on cutting process analysis is presented here. Two wood species (pine and beech) representing soft and hard woods were investigated with respect to four diverse drying methods used in industry. Fracture toughness and shear yield stress were determined directly from the cutting power signal that was recorded while frame sawing. An original procedure for compensation of the wood density variation is proposed to generalize mechanical properties of wood and allow direct comparison between species and drying methods. Noticeable differences of fracture toughness and shear yield stress values were found among all drying techniques and for both species, but only for beech wood the differences were statistically significant. These observations provide a new highlight on the understanding of the effect of thermo-hydro modification of wood on mechanical performance of structures. It can be also highly useful to optimize woodworking machines by properly adjusting cutting power requirements.


Sign in / Sign up

Export Citation Format

Share Document