scholarly journals Anshen Buxin Liuwei Pill, a Mongolian Medicinal Formula, Could Protect H2O2-Induced H9c2 Myocardial Cell Injury by Suppressing Apoptosis, Calcium Channel Activation, and Oxidative Stress

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yue Dong ◽  
Hai-Ying Tong ◽  
Xian-Ju Huang ◽  
Ghulam Murtaza ◽  
Yu-Jia Huang ◽  
...  

Background. Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula which has a therapeutic effect on the symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and short breath. However, its bioactivity against cardiac injury remains unclear. Methods. The protective effect of ABLP was evaluated using H9c2 cells. Cell viability, intracellular Ca2+, reactive oxidative indices, and mitochondrial membrane potential (∆ψ) were assessed, respectively. The mRNA levels of Ca2+ channel-related genes (DHPR, RyR2, and SCN5A) and oxidative stress-related genes (Keap1, Nrf2, and HO-1) were measured by RT-PCR. Results. 0.5–50 μg/mL ABLP could significantly decrease H2O2-induced cell injury by suppressing cell necrosis/apoptosis and excess oxidative stress, ameliorating the collapse of ∆ψ, and reducing intracellular Ca2+ concentration. Furthermore, 0.5–50 μg/mL ABLP reversed H2O2-induced imbalance in the mRNA levels of DHPR, RyR2, SCN5A, Keap1, Nrf2, and HO-1 gene in H9c2 cells, which further illustrate the mechanism. Conclusion. ABLP provided protective and therapeutic benefits against H2O2-induced H9c2 cell injury, indicating that this formula can effectively treat coronary disease. In addition, the present study also provides an in-depth understanding of the pharmacological functions of ABLP, which may lead to further successful applications of Mongolian medicine.

APOPTOSIS ◽  
2017 ◽  
Vol 22 (4) ◽  
pp. 531-543 ◽  
Author(s):  
Xiaofei Yan ◽  
Meng Xun ◽  
Xiaojuan Dou ◽  
Litao Wu ◽  
Fujun Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yu Jiang ◽  
Yanjuan Liu ◽  
Wen Xiao ◽  
Dandan Zhang ◽  
Xiehong Liu ◽  
...  

The clinical use of doxorubicin (DOX) is limited by its cardiotoxicity, which is closely associated with oxidative stress. Xinmailong (XML) is a bioactive peptide extracted from American cockroaches, which has been mainly applied to treat chronic heart failure in China. Our previous study showed that XML attenuates DOX-induced oxidative stress. However, the mechanism of XML in DOX-induced cardiotoxicity remains unclear. Heme oxygenase-1 (HO-1), an enzyme that is ubiquitously expressed in all cell types, has been found to take antioxidant effects in many cardiovascular diseases, and its expression is protectively upregulated under DOX treatment. Lysosome and autophagy are closely involved in oxidative stress as well. It is still unknown whether XML could attenuate doxorubicin-induced lysosomal dysfunction and oxidative stress in H9c2 cells via HO-1. Thus, this study was aimed at investigating the involvement of HO-1-mediated lysosomal function and autophagy flux in DOX-induced oxidative stress and cardiotoxicity in H9c2 cells. Our results showed that XML treatment markedly increased cell proliferation and SOD activity, improved lysosomal function, and ameliorated autophagy flux block in DOX-treated H9c2 cells. Furthermore, XML significantly increased HO-1 expression following DOX treatment. Importantly, HO-1-specific inhibitor (Znpp) or HO-1 siRNA could significantly attenuate the protective effects of XML against DOX-induced cell injury, oxidative stress, lysosomal dysfunction, and autophagy flux block. These results suggest that XML protects against DOX-induced cardiotoxicity through HO-1-mediated recovery of lysosomal function and autophagy flux and decreases oxidative stress, providing a novel mechanism responsible for the protection of XML against DOX-induced cardiomyopathy.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xuan Zhang ◽  
Qiang Fu ◽  
Longhe Xu ◽  
Yitian Yang ◽  
Weixing Zhao ◽  
...  

H19, a long noncoding RNA (lncRNA), reportedly protects myocardial cells (H9c2 cell line) against hypoxia-reoxygenation- (H/R-) induced injury. Dexmedetomidine (Dex) has an important myocardial protective effect, although its function and mechanism in cardiac ischemia/reperfusion (I/R) injury, especially for senile patients, requires further study. RNA N6-methyladenosine (m6A) is the most abundant endogenous RNA modification. However, the effect of Dex postconditioning on RNA m6A modification has rarely been reported. The aim of this study was to evaluate roles of H19 and m6A modification in Dex postconditioning of aged cardiomyocytes. Hydrogen peroxide (H2O2) was used to induce senescence of H9c2 cells. After 6 h of hypoxia, H9c2 cells were exposed to different concentrations of dexmedetomidine (0, 500 nM, 1 μM, and 2 μM) for 6 h. After knockdown or overexpression of H19 and its downstream gene miR-29b-3p and cellular inhibitor of apoptosis protein 1 (cIAP1), Dex postconditioning experiments were performed to examine effects on myocardial cell injury. Global m6A levels after H/R with or without Dex postconditioning were measured with a colorimetric m6A RNA Methylation Quantification Kit. The mechanism by which RNA m6A methylation regulated genes mediating H19 expression was verified by m6A RNA immunoprecipitation (MeRIP), and the function of Dex postconditioning of aged cardiomyocytes was investigated. Dex postconditioning protected against H/R-induced injury of aged myocardial cells through H19/miR-29b-3p/cIAP1, increased methylation of RNA m6A elicited by H/R, and attenuated H/R-induced injury by suppressing expression of the RNA m6A demethylase gene alkB homolog 5 (ALKBH5). In addition, AKLBH5 regulated the expression of H19, and Dex postconditioning attenuated H/R-induced injury via ALKBH5 in aged cardiomyocytes.


1997 ◽  
Vol 78 (4) ◽  
pp. 386-390 ◽  
Author(s):  
H Metzler ◽  
M Gries ◽  
P Rehak ◽  
T Lang ◽  
S Fruhwald ◽  
...  

Author(s):  
E. Murphy ◽  
C. Steenbergen ◽  
A. LeFurgey ◽  
M. Lieberman ◽  
R. E. London

Sign in / Sign up

Export Citation Format

Share Document