scholarly journals Current Noise in Thick and Thin Film Resistors

1983 ◽  
Vol 10 (2-3) ◽  
pp. 81-85 ◽  
Author(s):  
S. Demolder ◽  
A. Van Calster ◽  
M. Vandendriessche

In this paper a sensitive measuring circuit is described for the measurement of current noise on high quality thin and thick film resistors. Measured data on resistors are presented and analysed.

Circuit World ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Wojciech Steplewski ◽  
Andrzej Dziedzic ◽  
Janusz Borecki ◽  
Grazyna Koziol ◽  
Tomasz Serzysko

Purpose – The purpose of this paper is to investigate the influence of parameters of embedded resistive elements manufacturing process as well as the influence of environmental factors on their electrical resistance. The investigations were made in comparison to the similar constructions of discrete chip resistors assembled to standard printed circuit boards (PCBs). Design/methodology/approach – The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon-silver inks as well as chip resistors in 0402 and 0603 packages. The polymer thick-film resistive films were screen-printed on the several types finishing materials of contact terminations such as copper, silver, and gold. To determine the sensitivity of embedded resistors versus standard assembled chip resistors on environmental exposure, the climatic chamber was used. The measurements of resistance were carried out periodically during the tests, and after the exposure cycles. Findings – The results show that the change of electrical resistance of embedded resistors, in dependence of construction and base material, is different and mainly not exceed the range of 3 per cent. The achieved results in reference to thin-film resistors are comparable with results for standard chip resistors. However, the results that were obtained for thick-film resistors with Ag and Ni/Au contacts are similar. It was not found the big differences between resistors with and without conformal coating. Research limitations/implications – The studies show that embedded resistors can be used interchangeably with chip resistors. It allows to save the area on the surface of PCB, occupied by these passive elements, for assembly of active elements (ICs) and thus enable to miniaturization of electronic devices. But embedding of passive elements into PCB requires to tackle the effect of each forming process steps on the operational properties. Originality/value – The technique of passive elements embedding into PCB is generally known; however, there are no detailed reports on the impact of individual process steps and environmental conditions on the stability of their electrical resistance. The studies allow to understand the importance of each factor process and the mechanisms of operational properties changes depending on the used materials.


2017 ◽  
Vol 29 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Andrzej Dziedzic ◽  
Pawel Osypiuk ◽  
Wojciech Steplewski

Purpose The paper aims to verify the influence of mechanical factors (longitudinal elongation at constant stretching velocity, constant elongation strain and cyclic compressive and tensile stresses) on the electrical properties of thin-film and polymer thick-film resistors on flexible substrates. Design/methodology/approach Kapton foil was used as a substrate for all test samples. Designed resistive structures were made with the aid of two polymer thick-film resistive inks or OhmegaPly Ni-P resistive foil. Two different topologies – the horseshoe and triangular – were used. These topologies should have the opposite stability parameters. Findings Almost all presented data confirm the influence of the topology of resistors on stability of their electrical properties. The resistive materials applied for test structures also affect the stability under various mechanical exposures. Originality/value In general, the largest changes were caused by longitudinal elongation at constant stretching velocity, whereas other tests caused smaller changes of electrical properties. The measurements confirm the influence of topology on stability of electric properties.


Circuit World ◽  
2017 ◽  
Vol 43 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Wojciech Steplewski ◽  
Andrzej Dziedzic ◽  
Janusz Borecki ◽  
Tomasz Serzysko

Purpose The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as thermal-humidity and thermal exposure. Design/methodology/approach The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon–silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. The capacitors and thin- and thick-film resistors were tested in the climatic chamber in conditions of thermal-humidity exposure at 85°C and 85 per cent RH for 500 h. The embedded inductors were tested in two different environmental conditions: thermal-humidity exposure at 60°C and 95 per cent RH, and thermal exposure at 150°C and additionally at the temperature in the range of +25°C to +150°C. Findings Studies show that in the case of embedded capacitors, the changes caused by exposure to thermal-humidity are durable and lead to the capacity increase. The embedded thin-film resistors behave in the same manner, whereas the thick-film resistors were the least resistant to the conditions of exposure. Most of the polymer thick-film resistors have been damaged. The changes of coils' properties during aging are small, and what is most important is that, after some time of exposure, their parameters stabilize at a particular level. The changes resulting from the increase in temperature are typically related to the change of material resistance (Cu) of which coils are made, and as such, they cannot be avoided but they can be predicted. Research limitations/implications The realized studies allowed determination of the properties of the embedded passive elements with respect to specific environmental exposures. The studies show that embedded resistors can be used interchangeably with chip passive elements. It allows saving the area on the surface of PCB, occupied by these passive elements, for assembly of active elements integrated circuits (ICs) and thus enabling the miniaturization of electronic devices. Originality/value The knowledge about the behavior of the operating parameters of embedded components, considering the environmental conditions, allows for development of more complex systems with integrated PCBs.


Circuit World ◽  
2018 ◽  
Vol 44 (1) ◽  
pp. 29-36
Author(s):  
Wojciech Stęplewski ◽  
Andrzej Dziedzic ◽  
Kamil Janeczek ◽  
Aneta Araźna ◽  
Krzysztof Lipiec ◽  
...  

Purpose The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic properties of embedded passives was analyzed. The main reason for these investigations was to determine functionality of passives for space application. Design/methodology/approach The investigations were based on the thin-film resistors made of Ni-P alloy, thick-film resistors made of carbon or carbon-silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. Prepared samples were examined under the influence of a constant elevated temperature (100, 130 or 160°C) in a long period of time (minimum of 30 h), thermal cycles (from −40 to +85°C) or thermal shocks (from −40 to +105°C or from −40 to +125°C). Findings The achieved results revealed that resistance drift became bigger when the samples were treated at a higher constant temperature. At the same time, no significant difference in change in electrical properties for 50 and 100 Ω resistors was noticed. For all the tests, resistance change was below 2 per cent regardless of a value of the tested resistors. Conducted thermal shock studies indicate that thin-film resistors, coils and some thick-film resistors are characterized by minor variations in basic parameters. Some of the inks may show considerable resistance variations with temperature changes. Significant changes were also exhibited by embedded capacitors. Originality/value The knowledge about the behavior of the operating parameters of embedded components considering environmental conditions allow for development of more complex systems with integrated printed circuit boards.


2021 ◽  
Vol 227 ◽  
pp. 111014
Author(s):  
Chien-Chung Hsu ◽  
Sheng-Min Yu ◽  
Kun-Mu Lee ◽  
Chuan-Jung Lin ◽  
Hao-Chien Cheng ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 1446-1451 ◽  
Author(s):  
Takeshi Kasuya ◽  
Hideto Suzuki

The fatigue strength of TiAl intermetallic alloy coated with TiAlN film was studied in vacuum at 1073K using a SEM-servo testing machine. In addition, three kinds of TiAlN films were given by physical vapor deposition (1, 3, and 10μ m). The fatigue strength of 3μ m was highest. Also, the fatigue strength of 1μ m was lowest. From this result, existence of optimum film thickness was suggested because the difference of fatigue strength arose in each film thickness. The justification for existence of optimum film thickness is competition of 45-degree crack and 90-degree crack. The 45-degree crack is phenomenon seen in the thin film (1μ m), and is caused by plastic deformation of TiAl substrate. The 45-degree crack is the factor of the fatigue strength fall by the side of thin film. In contrast, the 90-degree crack is phenomenon in the thick film (10μ m), and is caused as result of reaction against load to film. The 90-degree crack is the factor of the fatigue strength fall by the side of thick film. In conclusion, the optimum film thickness can perform meso fracture control, and improves fatigue strength.


Sign in / Sign up

Export Citation Format

Share Document