scholarly journals Heegaard splittings and Morse-Smale flows

2003 ◽  
Vol 2003 (56) ◽  
pp. 3539-3572 ◽  
Author(s):  
Ralf Gautschi ◽  
Joel W. Robbin ◽  
Dietmar A. Salamon

We describe three theorems which summarize what survives in three dimensions of Smale's proof of the higher-dimensional Poincaré conjecture. The proofs require Smale's cancellation lemma and a lemma asserting the existence of a2-gon. Such2-gons are the analogues in dimension two of Whitney disks in higher dimensions. They are also embedded lunes; an (immersed) lune is an index-one connecting orbit in the Lagrangian Floer homology determined by two embedded loops in a2-manifold.

2017 ◽  
Vol 3 ◽  
pp. e123 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object’s shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from ℝ4to ℝ3. We present three projections that we believe are particularly intuitive for this purpose: (i) a simple ‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a stereographic projection to ℝ3, which results in an inwards-outwards fourth axis. Our focus is in using these projections from ℝ4to ℝ3, but they are formulated from ℝnto ℝn−1so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


1985 ◽  
Vol 38 (3) ◽  
pp. 299 ◽  
Author(s):  
AC Hurley

There has recently been a revival of interest in the helical structure built up as a column of face-sharing tetrahedra, because of possible applications in structural crystallography (Nelson 1983). This structure and its analogues in spaces of different dimensions are investigated here. It is shown that the only crystallographic cases are the structures in one- and two-dimensional space. For three and higher dimensional space the structures are all non-crystallographic. For the physically important case of three dimensions, this result is implicit in an early discussion by Coxeter (1969). Results obtained here include explicit formulae for the positions of all vertices of the simplexes for dimensions n = 1-4 and a demonstration that, for arbitrary n, the ratio of the translation component of the screw to the edge of the simplex is {6/ n(n+ I)(n+ 2)}1/2


Author(s):  
Giuliana Indelicato ◽  
Tom Keef ◽  
Paolo Cermelli ◽  
David G. Salthouse ◽  
Reidun Twarock ◽  
...  

We study the structural transformations induced, via the cut-and-project method, in quasicrystals and tilings by lattice transitions in higher dimensions, with a focus on transition paths preserving at least some symmetry in intermediate lattices. We discuss the effect of such transformations on planar aperiodic Penrose tilings, and on three-dimensional aperiodic Ammann tilings with icosahedral symmetry. We find that locally the transformations in the aperiodic structures occur through the mechanisms of tile splitting, tile flipping and tile merger, and we investigate the origin of these local transformation mechanisms within the projection framework.


1997 ◽  
Vol 08 (03) ◽  
pp. 583-588 ◽  
Author(s):  
L. L. Moseley

The asymptotic behavior of the density profile of the fluid-fluid interface is investigated by computer simulation and is found to be better described by the error function than by the hyperbolic tangent in three dimensions. For higher dimensions the hyperbolic tangent is a better approximation.


2002 ◽  
Vol 34 (01) ◽  
pp. 48-57
Author(s):  
Rahul Roy ◽  
Hideki Tanemura

We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.


2009 ◽  
Vol 46 (2) ◽  
pp. 263-273 ◽  
Author(s):  
Mowaffaq Hajja

The Pons Asinorum , or the Bridge of Asses , refers to Proposition 5 of Book I of Euclid’s Elements . This proposition and its converse, Proposition 6, state that two sides of a triangle are equal if and only if the opposite angles are equal. Analogues of these propositions for higher dimensional d -simplices are considered in this paper, and satisfactory results are obtained for orthocentric d -simplices. These results do not hold for non-orthocentric d -simplices, thus supporting the point of view that orthocentric d -simplices and not arbitrary ones are the adequate generalization of triangles.


1995 ◽  
Vol 15 (1) ◽  
pp. 121-147 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

AbstractSystems possessing symmetries often admit heteroclinic cycles that persist under perturbations that respect the symmetry. The asymptotic stability of such cycles has previously been studied on an ad hoc basis by many authors. Sufficient conditions, but usually not necessary conditions, for the stability of these cycles have been obtained via a variety of different techniques.We begin a systematic investigation into the asymptotic stability of such cycles. A general sufficient condition for asymptotic stability is obtained, together with algebraic criteria for deciding when this condition is also necessary. These criteria are always satisfied in ℝ3 and often satisfied in higher dimensions. We end by applying our results to several higher-dimensional examples that occur in mode interactions with O(2) symmetry.


1977 ◽  
Vol 9 (2) ◽  
pp. 268-282 ◽  
Author(s):  
Stanley Sawyer

Let I(x, u) be the probability that two genes found a vector distance x apart are the same type in an infinite-allele selectively-neutral migration model with mutation rate u. The creatures involved inhabit an infinite of colonies, are diploid and are held at N per colony. Set in one dimension and in higher dimensions, where σ2 is the covariance matrix of the migration law (which is assumed to have finite fifth moments). Then in one dimension, in two dimensions, and in three dimensions uniformly for Here C0 is a constant depending on the migration law, K0(y) is the Bessel function of the second kind of order zero, and are the eigenvalues of σ2. For symmetric nearest-neighbor migrations, in one dimension and log mi in two. For is known in one dimension and C0 does not appear. In two dimensions, These results extend and make more precise earlier work of Malécot, Weiss and Kimura and Nagylaki.


Sign in / Sign up

Export Citation Format

Share Document