scholarly journals Propagation of Rossby waves in stratified shear flows

1989 ◽  
Vol 12 (3) ◽  
pp. 547-557
Author(s):  
Palani G. Kandaswamy ◽  
B. Tamil Selvi ◽  
Lokenath Debnath

A study is made of the propagation of Rossby waves in a stably stratified shear flows. The wave equation for the Rossby waves is derived in an isothermal atmosphere on a beta plane in the presence of a latitudinally sheared zonal flow. It is shown that the wave equation is singular at five critical levels, but the wave absorption takes place only at the two levels where the local relative frequency equals in magnitude to the Brunt Vaisala frequency. This analysis also reveals that these two levels exhibit valve effect by allowing the waves to penetrate them from one side only. The absorption coefficient exp(2πμ)is determined at these levels. Both the group velocity approach and single wave treatment are employed for the investigation of the problem.

2008 ◽  
Vol 602 ◽  
pp. 303-326 ◽  
Author(s):  
E. PLAUT ◽  
Y. LEBRANCHU ◽  
R. SIMITEV ◽  
F. H. BUSSE

A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.


1978 ◽  
Vol 89 (4) ◽  
pp. 785-792 ◽  
Author(s):  
N. Rudraiah ◽  
M. Venkatachalappa

The propagation of internal Alfvén-inertio-acoustic gravity waves in a perfectly electrically conducting, stratified, inviscid, non-isothermal, rotating atmosphere permeated by a non-uniform magnetic field is investigated. These waves exhibit singular properties at the critical levels at which the magnetic field and the sound velocity are such that \[ (\omega^2 - S^2)\{(c^2+V^2)\omega^2-c^2S^2\}-(c^2+V^2)\overline{R}^2=0, \] where ω is the frequency of the waves, $S = kV_x + lV_y,\overline{R} = 2\Omega_z\omega$, Vx and Vy are the x and y components of the Alfvén velocity, k and l are the corresponding wavenumbers and c is the sonic velocity. These levels act like valves which permit waves to penetrate them from one side only and absorb them when they propagate from the other side. In contrast to the incompressible results of Acheson (1972), we show that the valve effect in compressible flow no longer requires the presence of non-zero components of rotation in the plane normal to the direction in which the medium varies. We find that the compressibility increases the probability of a valve effect and so increases the capacity of a hydromagnetic wave to propagate across a field line, rather than being absorbed at some critical level.


Author(s):  
Vladimir Zeitlin

After analysis of general properties of horizontal motion in primitive equations and introduction of principal parameters, the key notion of geostrophic equilibrium is introduced. Quasi-geostrophic reductions of one- and two-layer rotating shallow-water models are obtained by a direct filtering of fast inertia–gravity waves through a choice of the time scale of motions of interest, and by asymptotic expansions in Rossby number. Properties of quasi-geostrophic models are established. It is shown that in the beta-plane approximations the models describe Rossby waves. The first idea of the classical baroclinic instability is given, and its relation to Rossby waves is explained. Modifications of quasi-geostrophic dynamics in the presence of coastal, topographic, and equatorial wave-guides are analysed. Emission of mountain Rossby waves by a flow over topography is demonstrated. The phenomena of Kelvin wave breaking, and of soliton formation by long equatorial and topographic Rossby waves due to nonlinear effects are explained.


1975 ◽  
Vol 72 (4) ◽  
pp. 773-786 ◽  
Author(s):  
W. L. Chang ◽  
T. N. Stevenson

The way in which internal waves change in amplitude as they propagate through an incompressible fluid or an isothermal atmosphere is considered. A similarity solution for the small amplitude isolated viscous internal wave which is generated by a localized two-dimensional disturbance or energy source was given by Thomas & Stevenson (1972). It will be shown how summations or superpositions of this solution may be used to examine the behaviour of groups of internal waves. In particular the paper considers the waves produced by an infinite number of sources distributed in a horizontal plane such that they produce a sinusoidal velocity distribution. The results of this analysis lead to a new small perturbation solution of the linearized equations.


2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


2016 ◽  
Vol 806 ◽  
pp. 254-303
Author(s):  
R. J. Munro ◽  
M. R. Foster

A linearly stratified fluid contained in a circular cylinder with a linearly sloped base, whose axis is aligned with the rotation axis, is spun-up from a rotation rate $\unicode[STIX]{x1D6FA}-\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}$ to $\unicode[STIX]{x1D6FA}$ (with $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}\ll \unicode[STIX]{x1D6FA}$) by Rossby waves propagating across the container. Experimental results presented here, however, show that if the Burger number $S$ is not small, then that spin-up looks quite different from that reported by Pedlosky & Greenspan (J. Fluid Mech., vol. 27, 1967, pp. 291–304) for $S=0$. That is particularly so if the Burger number is large, since the Rossby waves are then confined to a region of height $S^{-1/2}$ above the sloped base. Axial vortices, ubiquitous features even at tiny Rossby numbers of spin-up in containers with vertical corners (see van Heijst et al.Phys. Fluids A, vol. 2, 1990, pp. 150–159 and Munro & Foster Phys. Fluids, vol. 26, 2014, 026603, for example), are less prominent here, forming at locations that are not obvious a priori, but in the ‘western half’ of the container only, and confined to the bottom $S^{-1/2}$ region. Both decay rates from friction at top and bottom walls and the propagation speed of the waves are found to increase with $S$ as well. An asymptotic theory for Rossby numbers that are not too large shows good agreement with many features seen in the experiments. The full frequency spectrum and decay rates for these waves are discussed, again for large $S$, and vertical vortices are found to occur only for Rossby numbers comparable to $E^{1/2}$, where $E$ is the Ekman number. Symmetry anomalies in the observations are determined by analysis to be due to second-order corrections to the lower-wall boundary condition.


2009 ◽  
Vol 66 (6) ◽  
pp. 1735-1748 ◽  
Author(s):  
W. T. M. Verkley

Abstract A global version of the equivalent barotropic vorticity equation is derived for the one-layer shallow-water equations on a sphere. The equation has the same form as the corresponding beta plane version, but with one important difference: the stretching (Cressman) term in the expression of the potential vorticity retains its full dependence on f 2, where f is the Coriolis parameter. As a check of the resulting system, the dynamics of linear Rossby waves are considered. It is shown that these waves are rather accurate approximations of the westward-propagating waves of the second class of the original shallow-water equations. It is also concluded that for Rossby waves with short meridional wavelengths the factor f 2 in the stretching term can be replaced by the constant value f02, where f0 is the Coriolis parameter at ±45° latitude.


Ocean Science ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 19-35 ◽  
Author(s):  
F. K. Hunt ◽  
R. Tailleux ◽  
J. J.-M. Hirschi

Abstract. Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.


Author(s):  
Ghodrat Ebadi ◽  
Aida Mojaver ◽  
Sachin Kumar ◽  
Anjan Biswas

Purpose – The purpose of this paper is to discuss the integrability studies to the long-short wave equation that is studied in the context of shallow water waves. There are several integration tools that are applied to obtain the soliton and other solutions to the equation. The integration techniques are traveling waves, exp-function method, G′/G-expansion method and several others. Design/methodology/approach – The design of the paper is structured with an introduction to the model. First the traveling wave hypothesis approach leads to the waves of permanent form. This eventually leads to the formulation of other approaches that conforms to the expected results. Findings – The findings are a spectrum of solutions that lead to the clearer understanding of the physical phenomena of long-short waves. There are several constraint conditions that fall out naturally from the solutions. These poses the restrictions for the existence of the soliton solutions. Originality/value – The results are new and are sharp with Lie symmetry analysis and other advanced integration techniques in place. These lead to the connection between these integration approaches.


Sign in / Sign up

Export Citation Format

Share Document