scholarly journals The vertical structure of oceanic Rossby waves: a comparison of high-resolution model data to theoretical vertical structures

Ocean Science ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 19-35 ◽  
Author(s):  
F. K. Hunt ◽  
R. Tailleux ◽  
J. J.-M. Hirschi

Abstract. Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.

2011 ◽  
Vol 8 (3) ◽  
pp. 1089-1129
Author(s):  
F. K. Hunt ◽  
R. Tailleux ◽  
J. J.-M. Hirschi

Abstract. Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. The model data supports the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model. The model structures were surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography, respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.


2014 ◽  
Vol 71 (4) ◽  
pp. 1353-1370 ◽  
Author(s):  
Sabrina Gentile ◽  
Rossella Ferretti ◽  
Frank Silvio Marzano

Abstract One event of a tropical thunderstorm typically observed in northern Australia, known as Hector, is investigated using high-resolution model output from the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) observations from a ground-based weather radar located in Berrimah (Australia) and data from the Tropical Rainfall Measuring Mission (TRMM) satellite. The analysis is carried out by tracking the full life cycle of Hector from prestorm stage to the decaying stage. In both the prestorm stage, characterized by nonprecipitating cells, and the triggering stage, when the Hector storm is effectively initiated, an analysis is performed with the aid of high-spatial-and-temporal-resolution MM5 output and the Berrimah ground-based radar imagery. During the mature (“old”) stage of Hector, considering the conceptual model for tropical convection suggested by R. Houze, TRMM Microwave Imager satellite-based data were added to ground-based radar data to analyze the storm vertical structure (dynamics, thermodynamics, and hydrometeor contents). Model evaluation with respect to observations (radar reflectivity and TRMM data) suggests that MM5 performed fairly well in reproducing the dynamics of Hector, providing support to the assertion that the strength of convection, in terms of vertical velocity, largely contributes to the vertical distribution of hydrometeors. Moreover, the stages of the storm and its vertical structure display good agreement with Houze’s aforementioned conceptual model. Finally, it was found that the most important triggering mechanisms for this Hector event are topography, the sea breeze, and a gust front produced by previous convection.


Author(s):  
Xiaodong Wu ◽  
Falk Feddersen ◽  
Sarah N. Giddings

AbstractHere, we explore the kinematics and dynamics of coastal density fronts (within 10 km from shore and < 30 m depth), identified using an edge detection algorithm, in a realistic high resolution model of the San Diego Bight with relatively weak winds and small freshwater input. The density fronts have lengths spanning 4 − 10 km and surface density gradients spanning 2 − 20 × 10−4 kg m−4. Cross-shore oriented fronts are more likely with northward subtidal flow and are 1/3 as numerous as alongshore oriented fronts which are more likely with onshore surface baroclinic diurnal flow. Using a subset of the cross-shore fronts, decomposed into cross-front mean and perturbation components, an ensemble front is created. The ensemble cross-front mean flow is largely geostrophic in the cross- and along-front directions. The ensemble cross-shore front extends several kilometers from shore, with a distinct linear front axis and downwelling (upwelling) on the dense (light) side of the front, convergent perturbation cross-front flow within the upper 5 m, strengthening the ensemble front. Vertical mixing of momentum is weak, counter to the turbulent thermal wind mechanism. The ensemble cross-shore front resembles a gravity current and is generated by a convergent strain field acting on the large scale density field. The ensemble front is bounded by the shoreline and is alongfront geostropic and cross-front ageostrophic. This contrasts with the cross-front geostrophic and along-front ageostrophic balances of classic deformation frontogenesis, but is consistent with semi-geostrophic coastal circulation.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 376 ◽  
Author(s):  
Chengwu Zhao ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Juan Zhao

Precise center-detection of tropical cyclones (TCs) is critical for dynamic analysis in high resolution model data. The existence of both smaller scale perturbations and larger scale circulations could reduce the accuracy of center positioning. In this study, an objective center-finding algorithm is developed based on a two-dimensional Fourier filter and a vorticity centroid algorithm. This proposed algorithm is able to automatically adjust its parameters according to the scale of the target vortex instead of using artificially prescribed parameters in previous research. What’s more, this new algorithm has been optimized and validated by a hundred idealized vortexes with different sizes and small-scale perturbations. A high-resolution simulation of Typhoon Soudelor (2015) was used to evaluate the performance of the new algorithm, and the proposed objective center-finding algorithm was found able to detect a precise and reliable center.


2015 ◽  
Vol 72 (10) ◽  
pp. 3940-3957 ◽  
Author(s):  
Amaryllis Cotto ◽  
Israel Gonzalez ◽  
Hugh E. Willoughby

Abstract Spiral cloud bands dominate tropical cyclones’ appearance in satellite and radar images. It is generally accepted that at least some of them are vortex Rossby waves that propagate on the radial gradient of mean-flow-relative vorticity. This study models these features in Fourier and time domains as linear, barotropic, nondivergent waves on a maintained mean vortex scaled to resemble tropical cyclones. This formulation is the simplest one imaginable that encompasses the essential rotational dynamics. The modeled waves are episodically forced by a rotating annular train of sinusoidal vorticity sources and sinks that crudely represents eyewall convection. Substantial quiescent time intervals separate forced intervals. The waves propagate wave energy predominantly outward and converge angular momentum inward. Waves’ energy is absorbed as their perturbation vorticity becomes filamented near the outer critical radii where their Doppler-shifted frequencies and radial group velocities approach zero. The waves can propagate spatially only in narrow annular waveguides because of their slow tangential phase velocity and the restricted Rossby wave frequency domain. Although radial shear of the mean flow distorts their velocity field into tightly wound spirals, their streamfunction and geopotential fields assume the form of elliptical gyres or broad trailing spirals that do not resemble observed hurricane rainbands.


2015 ◽  
Vol 45 (3) ◽  
pp. 755-777 ◽  
Author(s):  
Antoine Hochet ◽  
Alain Colin de Verdière ◽  
Robert Scott

AbstractA linear model based on the quasigeostrophic equations is constructed in order to predict the vertical structure of Rossby waves and, more broadly, of anomalies resolved by altimeter data, roughly with periods longer than 20 days and with wavelengths larger than 100 km. The subsurface field is reconstructed from sea surface height and climatological stratification. The solution is calculated in periodic rectangular regions with a 3D discrete Fourier transform. The effect of the mean flow on Rossby waves is neglected, which the authors believe is a reasonable approximation for low latitudes. The method used has been tested with an idealized double-gyre simulation [performed with the Miami Isopycnal Coordinate Ocean Model (MICOM)]. The linear model is able to give reasonable predictions of subsurface currents at low latitudes (below approximately 30°) and for relatively weak mean flow. However, the predictions degrade with stronger mean flows and higher latitudes. The subsurface velocities calculated with this model using AVISO altimetric data and velocities from current meters have also been compared. Results show that the model gives reasonably accurate results away from the top and bottom boundaries, side boundaries, and far from western boundary currents. This study found, for the regions where the model is valid, an energy partition of the traditional modes of approximately 68% in the barotropic mode and 25% in the first baroclinic mode. Only 20% of the observed kinetic energy can be attributed to free Rossby waves of long periods that propagate energy to the west.


2012 ◽  
Vol 27 (1-2) ◽  
pp. 133-148 ◽  
Author(s):  
Jesse Dorrestijn ◽  
Daan T. Crommelin ◽  
A. Pier. Siebesma ◽  
Harm J. J. Jonker

1976 ◽  
Vol 78 (2) ◽  
pp. 217-235 ◽  
Author(s):  
Nelson G. Hogg

It is shown that spatially growing waves with complex wavenumber and real frequency can exist in a baroclinic flow and that these waves are substantially different from the more commonly studied temporally growing ones. They are bounded by a low wavenumber cut-off which separates them from the temporally growing waves. Their amplitude and phase change most rapidly near their steering level and are almost depth independent away from it. Most of the energy conversion from mean flow to the waves occurs at this level. It is suggested that these motions may be forced by steady disturbances such as bottom relief.The theory is compared with recent observations of strong small-scale motions in a region of rough topography of MODE and in the vicinity of the Gulf Stream. The vertical structure can be well matched with the theory but the complex wavenumber appears to be a factor of 2–3 greater than that predicted.


2021 ◽  
Author(s):  
Alexandra Laeng ◽  
Thomas von Clarmann ◽  
Quentin Errera ◽  
Udo Grabowski ◽  
Shawn Honomichl

Abstract. High-resolution model data are used to estimate typical variabilities of mixing ratios of trace species as a function of spatial and temporal distance. These estimates can be used to explain that part of the differences between observations made with different observing systems that are due to less than perfect collocation of the measurements. The variability values are described by a two-parameter regression function. A reparametrization of the variabilities values as function of latitudinal graidents is proposed, and season-independence of linear approximation of such function is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document