scholarly journals Stability of solutions of a nonstandard ordinary differential system by Lyapunov's second method

1991 ◽  
Vol 4 (3) ◽  
pp. 211-224
Author(s):  
M. Venkatesulu ◽  
P. D. N. Srinivasu

Differential equations of the form y′=f(t,y,y′) where f is not necessarily linear in its arguments represent certain physical phenomena and are known for quite some time. The well known Clairut's and Chrystal's equations fall into this category. Earlier we established the existence of a (unique) solution of the nonstandard initial value problem y′=f(t,y,y′), y(t0)=y0 under certain natural hypotheses on f. In this paper, we studied the stability of solutions of a nonstandard first order ordinary differential system.

1992 ◽  
Vol 5 (3) ◽  
pp. 261-274
Author(s):  
M. Venkatesulu ◽  
P. D. N. Srinivasu

Differential equations of the form y′=f(t,y,y′), where f is not necessarily linear in its arguments, represent certain physical phenomena and solutions have been known for quite some time. The well known Clairut's and Chrystal's equations fall into this category. Earlier existence of solutions of first order initial value problems and stability of solutions of first order ordinary differential system of the above type were established. In this paper we study boundedness and asymptotic stability in the large of solutions of an ordinary differential system of the above type under certain natural hypotheses on f.


1992 ◽  
Vol 5 (1) ◽  
pp. 69-82 ◽  
Author(s):  
M. Venkatesulu ◽  
P. D. N. Srinivasu

Differential equations of the form y′=f(t,y,y′), where f is not necessarily linear in its arguments, represent certain physical phenomena and are known for quite some time. The well known Clairut's and Chrystal's equations fall into this category. Earlier, we established the existence of a (unique) solution of the nonstandard initial value problem (NSTD IV P) y′=f(t,y,y′), y(t0)=y0 under certain natural hypotheses on f. In this paper we present some first order convergent numerical methods for finding the approximate solutions of the NST D I V Ps.


Author(s):  
I. S. M. Zawawi ◽  
Z. B. Ibrahim ◽  
F. Ismail ◽  
Z. A. Majid

This paper focuses on the derivation of diagonally implicit two-point block backward differentiation formulas (DI2BBDF) for solving first-order initial value problem (IVP) with two fixed points. The method approximates the solution at two points simultaneously. The implementation and the stability of the proposed method are also discussed. A performance of the DI2BBDF is compared with the existing methods.


2021 ◽  
Vol 50 (6) ◽  
pp. 1799-1814
Author(s):  
Norazak Senu ◽  
Nur Amirah Ahmad ◽  
Zarina Bibi Ibrahim ◽  
Mohamed Othman

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.


The initial value problem for the two-dimensional inviscid vorticity equation, linearized about an azimuthal basic velocity field with monotonic angular velocity, is solved exactly for mode-one disturbances. The solution behaviour is investigated for large time using asymptotic methods. The circulation of the basic state is found to govern the ultimate fate of the disturbance: for basic state vorticity distributions with non-zero circulation, the perturbation tends to the steady solution first mentioned in Michalke & Timme (1967), while for zero circulation, the perturbation grows without bound. The latter case has potentially important implications for the stability of isolated eddies in geophysics.


2021 ◽  
Vol 5 (2) ◽  
pp. 442-446
Author(s):  
Muhammad Abdullahi ◽  
Hamisu Musa

This paper studied an enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems developed by Abdullahi & Musa and go further to established the necessary and sufficient conditions for the convergence of the method. The method is zero stable, A-stable and it is of order 5. The method is found to be suitable for solving first order stiff initial value problems


1971 ◽  
Vol 48 (2) ◽  
pp. 365-384 ◽  
Author(s):  
C. F. Chen ◽  
R. P. Kirchner

The stability of the flow induced by an impulsively started inner cylinder in a Couette flow apparatus is investigated by using a linear stability analysis. Two approaches are taken; one is the treatment as an initial-value problem in which the time evolution of the initially distributed small random perturbations of given wavelength is monitored by numerically integrating the unsteady perturbation equations. The other is the quasi-steady approach, in which the stability of the instantaneous velocity profile of the basic flow is analyzed. With the quasi-steady approach, two stability criteria are investigated; one is the standard zero perturbation growth rate definition of stability, and the other is the momentary stability criterion in which the evolution of the basic flow velocity field is partially taken into account. In the initial-value problem approach, the predicted critical wavelengths agree remarkably well with those found experimentally. The kinetic energy of the perturbations decreases initially, reaches a minimum, then grows exponentially. By comparing with the experimental results, it may be concluded that when the perturbation kinetic energy has grown a thousand-fold, the secondary flow pattern is clearly visible. The time of intrinsic instability (the time at which perturbations first tend to grow) is about ¼ of the time required for a thousandfold increase, when the instability disks are clearly observable. With the quasi-steady approach, the critical times for marginal stability are comparable to those found using the initial-value problem approach. The predicted critical wavelengths, however, are about 1½ to 2 times larger than those observed. Both of these points are in agreement with the findings of Mahler, Schechter & Wissler (1968) treating the stability of a fluid layer with time-dependent density gradients. The zero growth rate and the momentary stability criteria give approximately the same results.


Sign in / Sign up

Export Citation Format

Share Document