scholarly journals Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

Author(s):  
Mehrzad Biguesh ◽  
Alex B. Gershman
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6561
Author(s):  
Pingchuan Liu ◽  
Kuangang Fan ◽  
Yuhang Chen

Over the last decade, unmanned aerial vehicles (UAVs) with antenna arrays have usually been employed for the enhancement of wireless communication in millimeter-wave bands. They are commonly used as aerial base stations and relay platforms in order to serve multiple users. Many beamforming methods for improving communication quality based on channel estimation have been proposed. However, these methods can be resource-intensive due to the complexity of channel estimation in practice. Thus, in this paper, we formulate an MIMO blind beamforming problem at the receivers for UAV-assisted communications in which channel estimation is omitted in order to save communication resources. We introduce one analytical method, which is called the analytical constant modulus algorithm (ACMA), in order to perform blind beamforming at the UAV base station; this relies only on data received by the antenna. The feature of the constant modulus (CM) is employed to restrict the target user signals. Algebraic operations, such as singular value decomposition (SVD), are applied to separate the user signal space from other interferences. The number of users in the region served by the UAV can be detected by exploring information in the measured data. We seek solutions that are expressible as one Kronecker product structure in the signal space; then, the beamformers that correspond to each user can be successfully estimated. The simulation results show that, by using this analytically derived blind method, the system can achieve good signal recovery accuracy, a reasonable system sum rate, and acceptable complexity.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3486-3490

For future 5G wireless communication networks, millimeter-wave (mmWave) cellular systems is considered to be the key enabling technology because of its high data rates, low latency, high system capacity, and huge available bandwidths. However, multiuser networks in mmWave frequency bands encounter high path loss and interference, thus degrading the performance. Applying large antenna arrays at the base stations (BS) in order to achieve high beamforming gains with the help of precoding techniques is an efficient way of improving the performance of the system. Although multi-user beamforming can improve spectral efficiencies, full digital beamforming strategies used in the conventional microwave systems increase the hardware cost and consumes high power for large number of antennas in mmW systems. In this paper, a low-complexity multi-user hybrid precoding structure is proposed for mmWave multiple input multiple output (MIMO) channels utilizing Minimum Mean Square Error (MMSE) precoders at the BS with perfect channel knowledge. Simulations show that the achievable rate obtained by the proposed hybrid precoding scheme is very close to the single-user rate and also performs better compared to other hybrid precoding approaches.


2010 ◽  
Vol 9 (8) ◽  
pp. 2654-2663 ◽  
Author(s):  
Oren Somekh ◽  
Osvaldo Simeone ◽  
H. Vincent Poor ◽  
Shlomo Shamai

Author(s):  
Hyoung-Keon Kim ◽  
Yong-Suk Byun ◽  
Geon-Woong Jung ◽  
Yong-Hwan Lee

Abstract Deployment of small moving cells (SMCs) has been considered in advanced cellular systems, where wireless backhaul links are required between base stations and SMCs. In this paper, we consider signal transmission by means of multiuser beamforming in the wireless backhaul link. We generate the beam weight in an eigen-direction of weighted combination of short- and long-term channel information of the backhaul link. The beam weight can maximize the average signal-to-leakage-plus-noise ratio (SLNR), while providing the transmission robust to SMC mobility. We analyze the performance of the proposed scheme in terms of the average signal-to-interference-plus-noise ratio (SINR) and optimize the transmit power by iterative water-filling. Finally, we verify the performance of the proposed scheme by computer simulation.


Author(s):  
Muhammad Zarol Fitri Khairol Fauz ◽  
Elsheikh Mohamed Ahmed Elsheikh

Relying has in use for decades to tackle some of the challenges of wireless communication such as extending transmitting distance, transmitting over rough terrains. Diversity achieved through relaying is also a means to combat the random behavior of fading channels. In this work, effect of time and power allocation on relay performance is studied. The channel considered is the three-node channel with half-duplex constraint on the relay. The relaying technique assumed is decode-and-forward. Mutual information is used as the criteria to measure channel performance. There is half-duplex constraint and a total transmission power constraint on the relay source node and the relay node. A model is established to analyze the mutual information as a function of time allocation and power allocation in the case of AWGN regime. The model is extended to the Rayleigh fading scenario. In both AWGN and Rayleigh fading, results showed that the importance of relaying is more apparent when more resources are allocated to the relay. It was also shown that quality of the source to destination link has direct impact on the decision to relay or not to relay. Relatively good source to destination channel makes relaying less useful. The opposite is true for the other two links, namely the source to relay channel and the relay to destination channel. When these two channels are good, relaying becomes advantageous. When applied to cellular systems, we concluded that relaying is more beneficial to battery-operated mobile nodes than to base stations.


2000 ◽  
Vol 49 (5) ◽  
pp. 1784-1792 ◽  
Author(s):  
A. Sabharwal ◽  
D. Avidor ◽  
L. Potter

Sign in / Sign up

Export Citation Format

Share Document