scholarly journals Flow injection analysis of water. Part 1: Automatic preconcentration determination of sulphate, ammonia and iron(II)/iron(III)

1993 ◽  
Vol 15 (4) ◽  
pp. 141-146 ◽  
Author(s):  
J. S. Cosano ◽  
M. D. Luque de Castro ◽  
M. Valcárcel

This paper describes a simple flow-injection (FI) manifold for the determination of a variety of species in industrial water. The chemical systems involved in the determination of ammonia (formation of Indophenol Blue), sulfate (precipitation with Ba(II)), and iron (complexation with 1,10-phenanthroline with the help of a prior redox reaction for speciation) were selected so that a common manifold could be used for the sequential determination of batches of each analyte. A microcolumn of a suitable ion exchange material was used for on-line preconcentration of each analyte prior to injection; linear ranges for the determination of the analytes at the ng/ml levels were obtained with good reproducibility. The manifold and methods are ready for full automation.

2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Nicholaos P. Evmiridis ◽  
Athanasios G. Vlessidis ◽  
Nicholas C. Thanasoulias

The progress of the research work of the author and his colleagues on the field of CL-emission generated by pyrogallol oxidation and further application for the direct determination of periodate and indirect or direct determination of other compounds through flow-injection manifold/CL-detection set up is described. The instrumentation used for these studies was a simple flow-injection manifold that provides good reproducibility, coupled to a red sensitive photomultiplier that gives sensitive CL-detection. In addition, recent reports on studies and analytical methods based on CL-emission generated by periodate oxidation by other authors are included.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 547
Author(s):  
Kai Zhang

Two methods for measuring ochratoxin A in corn, oat, and grape juice were developed and compared. Flow injection (FI) and on-line liquid chromatography (LC) performances were evaluated separately, with both methods using a triple quadrupole tandem mass spectrometer (MS/MS) for quantitation. Samples were fortified with 13C uniformly labeled ochratoxin A as the internal standard (13C-IS) and prepared by dilution and filtration, followed by FI- and LC-MS/MS analysis. For the LC-MS/MS method, which had a 10 min run time/sample, recoveries of ochratoxin A fortified at 1, 5, 20, and 100 ppb in corn, oat, red grape juice, and white grape juice ranged from 100% to 117% with RSDs < 9%. The analysis time of the FI-MS/MS method was <60 s/sample, however, the method could not detect ochratoxin A at the lowest fortification concentration, 1 ppb, in all tested matrix sources. At 5, 20, and 100 ppb, recoveries by FI-MS/MS ranged from 79 to 117% with RSDs < 15%. The FI-MS/MS method also had ~5× higher solvent and matrix-dependent instrument detection limits (0.12–0.35 ppb) compared to the LC-MS/MS method (0.02–0.06 ppb). In the analysis of incurred corn and oat samples, both methods generated comparable results within ±20% of reference values, however, the FI-MS/MS method failed to determine ochratoxin A in two incurred wheat flour samples due to co-eluted interferences due to the lack of chromatographic separation.


2000 ◽  
Vol 49 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Hiroki OHURA ◽  
Toshihiko IMATO ◽  
Ikuo MATSUO ◽  
Sumio YAMASAKI

Sign in / Sign up

Export Citation Format

Share Document