scholarly journals Role of microRNAs in drug resistance of gastric cancer cells

2019 ◽  
Vol 27 (15) ◽  
pp. 913-917
Author(s):  
Bi-Bo Tan ◽  
Yong Li
2013 ◽  
Vol 13 (1) ◽  
pp. 18 ◽  
Author(s):  
Biao Xie ◽  
Jianping Zhou ◽  
Guoshun Shu ◽  
Dong-cai Liu ◽  
Jiapeng Zhou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linwen Zhu ◽  
Zhe Li ◽  
Xiuchong Yu ◽  
Yao Ruan ◽  
Yijing Shen ◽  
...  

Abstract Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qing Li ◽  
Dachuan Zhang ◽  
Hui Wang ◽  
Jun Xie ◽  
Lei Peng ◽  
...  

Solute carrier organic anion transporter family member 4A1 (SLCO4A1-AS1), a newly discovered lncRNA, may exert effects in tumors. Since its role in gastric cancer remains obscure, we sought to explore the mechanism of SLCO4A1-AS1 in gastric cancer. The relationship among SLCO4A1-AS1, miR-149-5p, and STAT3 was detected by bioinformatics, dual luciferase analysis, and Pearson’s test, and the expressions of these genes were determined by quantitative real-time PCR and Western blot. Moreover, CCK-8, flow cytometry, wound healing assay, and Transwell analysis were performed to verify the function of SLCO4A1-AS1 in gastric cancer. Rescue experiments were used to detect the role of miR-149-5p. The expressions of SLCO4A1-AS1 and STAT3 were increased, while the expression of miR-149-5p was suppressed in gastric cancer tissues and cell lines. In addition, STAT3 expression was negatively correlated with miR-149-5p expression but was positively correlated with SLCO4A1-AS1 expression. Overexpression of SLCO4A1-AS1 promoted cell viability, migration, invasion, and STAT3 expression but suppressed apoptosis, while knockdown of SLCO4A1-AS1 had the opposite effect. SLCO4A1-AS1 bound to miR-149-5p and targeted STAT3. Moreover, miR-149-5p mimic inhibited the malignant development of gastric cancer cells and obviously reversed the function of SLCO4A1-AS1 overexpression. Our research reveals that abnormally increased SLCO4A1-AS1 expression may be an important molecular mechanism in the development of gastric cancer.


2006 ◽  
Vol 96 (1) ◽  
pp. 21-29 ◽  
Author(s):  
V. Y. Shin ◽  
W. K. K. Wu ◽  
K. M. Chu ◽  
M. W. L. Koo ◽  
H. P. S. Wong ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 2499-2504 ◽  
Author(s):  
Zhongwei He ◽  
Xiangling Xiao ◽  
Shan Li ◽  
Yang Guo ◽  
Qiuyue Huang ◽  
...  

2020 ◽  
Author(s):  
Jinyan Zhao ◽  
Weilan Lan ◽  
Jun Peng ◽  
Bin Guan ◽  
Jie Liu ◽  
...  

Abstract Background: Multidrug resistance (MDR) is a critical reason of cancer chemotherapy failure. Babao dan (BBD) is a classical and famous traditional Chinese patent medicine, which has been reported to has anti-gastric cancer activity. However, the roles and molecular mechanisms of the reversal of MDR of gastric cancer by BBD have not been well described until now. Methods: SGC-7901 and SGC-7901/DDP cells were used in this study, and drug resistance and evaluation of the reversal effect of BBD was determined using MTT assays in SGC7901/DDP cells. Doxorubicin (DOX) and Rhodamin123 (Rho123) staining was performed to assess BBD effects on drug accumulation and efflux of drug-resistant gastric cancer cells. Cell apoptosis was directly assessed using DAPI staining. Apoptotic and dead cells were detected by flow cytometry after staining with Annexin V-FITC and propidium iodide (PI). Cyto-ID assays were performed to examine cellular autophagy. Changes in cell protein expression of ABCB1, ABCC1, ABCG2, Bax, Bcl-2, caspase-3, cleaved-caspase-3, LC3, p62, Beclin1 and the PI3K/AKT/mTOR pathway were detected by Western blot. Inhibition of autophagy with 3-MA, chloroquine (CQ) and PI3K antagonist (LY294002) or agonist (740Y-P) , uncovered a role for the potentially downregulated signaling pathway, PI3K/AKT/mTOR.Results: The SGC7901/DDP cell line exhibited multi-drug resistance to DDP, DOX and 5-fluorouracil (5-FU) and the drug resistant index (RI) of DDP, DOX and 5-FU were 1.86, 1.50 and 47.70, respectively. BBD reversed the MDR of SGC7901/DDP cells by increasingDOX accumulation, reducing Rh123 efflux and down-regulating the expression of ABCB1, ABCC1, ABCG2. Furthermore, BBD induced apoptosis in SGC7901/DDP cells through regulating caspase-3, cleaved-caspase-3, Bax and Bcl-2. Moreover, BBD induced autophagy in DDP-resistant gastric cancer cells via regulating p62, LC3 and Beclin1. Pathway analyses suggested BBD may inhibit PI3K/AKT/mTOR pathway activity and subsequent autophagy induction. Conclusions: BBD may reverse the MDR of gastric cancer cells, and promote autophagic death via inactivation of the PI3K/AKT/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document