P2-01-19: Expression of Receptor Like Protein Tyrosine Phosphatases mu (PTPRM) in Breast Cancer and the Biological Effects of PTPRM on Breast Cancer Cells.

Author(s):  
P-H Sun ◽  
L Ye ◽  
RE Mansel ◽  
WG Jiang
Endocrinology ◽  
2007 ◽  
Vol 148 (5) ◽  
pp. 2417-2423 ◽  
Author(s):  
Kin-Chuen Leung ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Heather J. Lee ◽  
Gary M. Leong ◽  
...  

Activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) pathway by GH is terminated by the suppressors of cytokine signaling (SOCSs) and protein tyrosine phosphatases, Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Based on our recent report that estrogen inhibits GH signaling by stimulating SOCS-2 expression, we investigated the effects of selective estrogen receptor modulators (SERMs) on GH signaling in human embryonic kidney (HEK293) and breast cancer (MDA-MB-231) cells expressing human GH receptor and estrogen receptor-α. 17β-Estradiol (E2) suppressed GH activation of a STAT5-responsive luciferase reporter and JAK2 phosphorylation in both cell models. 4-Hydroxytamoxifen and raloxifene augmented these actions of GH in HEK293 cells but not breast cancer cells. SOCS-2 expression in both cell types was stimulated by E2 but unaffected by SERMs. In HEK293 cells, SHP-1 was inhibited by raloxifene and 4-hydroxytamoxifen, whereas the latter additionally inhibited SHP-2. The phosphatases were unaffected by E2. In breast cancer cells, phosphatase activity was not altered by SERMs or E2. In summary, estrogen inhibited the JAK2/STAT5 signaling of GH and stimulated SOCS-2 expression in both HEK293 and breast cancer cells. By contrast, SERMs augmented GH signaling by reducing SHP activities in HEK293 cells and had no effect on both in breast cancer cells. We provide the first evidence for a novel mechanism regulating GH signaling, in which SERMs enhance GH activation of the JAK2/STAT5 pathway in a cell-type-dependent manner by attenuating protein tyrosine phosphatase activities.


2019 ◽  
Vol 11 (12) ◽  
pp. 1042-1055 ◽  
Author(s):  
Weiwei Shi ◽  
Dongmei Wang ◽  
Xinwang Yuan ◽  
Yi Liu ◽  
Xiaojie Guo ◽  
...  

Abstract Glucocorticoid receptor (GR) is involved in the transcriptional regulation of genes that are important for various biological functions, including tumor growth and metastatic progression. However, the cellular and biological effects of GR remain poorly understood. Here, we investigated the role of GR and its underlying mechanism in mediating breast cancer cell survival and metastasis. We observed that the GR levels were increased in drug-resistant breast cancer cells and in metastatic breast cancer samples. GR promoted tumor cell invasion and lung metastasis in vivo. The GR expression levels were negatively correlated with the survival rates of breast cancer patients. Both ectopic expression and knockdown of GR revealed that GR is a strong inducer of epithelial-to-mesenchymal transition (EMT), which is consistent with its effects on cell survival and metastasis. GR suppressed the expression of insulin receptor substrate 1 (IRS-1) by acting as an IRS-1 transcriptional repressor. In addition, GR has an opposite effect on the expression levels of IRS-2, indicating that GR is able to differentially regulate the IRS-1 and IRS-2 expression. The cellular and biological effects elicited by GR were consistent with the reduced levels of IRS-1 observed in cancer cells, and GR-mediated IRS-1 suppression activated the ERK2 MAP kinase pathway, which is required for GR-mediated EMT. Taken together, our results indicate that GR–IRS-1 signaling axis plays an essential role in regulating the survival, invasion, and metastasis of breast cancer cells.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4160
Author(s):  
Muhammad Farooq Khan ◽  
Fahd A. Nasr ◽  
Omar M. Noman ◽  
Nouf Abdulaziz Alyhya ◽  
Iftikhar Ali ◽  
...  

Cichorium intybus L., (chicory) is employed in various traditional medicines to treat a wide range of diseases and disorders. In the current investigation, two new naphthalane derivatives viz., cichorins D (1) and E (2), along with one new anthraquinone cichorin F (3), were isolated from Cichorium intybus. In addition, three previously reported compounds viz., β-sitosterol (4), β-sitosterol β-glucopyranoside (5), and stigmasterol (6) were also isolated from Cichorium intybus. Their structures were established via extensive spectroscopic data, including 1D (1H and 13C) and 2D NMR (COSY, HSQC and HMBC), and ESIMS. Cichorin E (2) has a weak cytotoxic effect on breast cancer cells (MDA-MB-468: IC50: 85.9 µM) and Ewing’s sarcoma cells (SK-N-MC: IC50: 71.1 µM); cichorin F (3) also illustrated weak cytotoxic effects on breast cancer cells (MDA-MB-468: IC50: 41.0 µM and MDA-MB-231: IC50: 45.6 µM), and SK-N-MC cells (IC50: 71.9 µM). Moreover compounds 1–3 did not show any promising anthelmintic effects.


2015 ◽  
Vol 11 (6) ◽  
pp. 4303-4308 ◽  
Author(s):  
XU-QIAN FANG ◽  
XIANG-FAN LIU ◽  
LING YAO ◽  
CHANG-QIANG CHEN ◽  
JIA-FEI LIN ◽  
...  

2007 ◽  
Vol 67 (9) ◽  
pp. 4199-4209 ◽  
Author(s):  
Julie Hanson Ostrander ◽  
Andrea R. Daniel ◽  
Kristopher Lofgren ◽  
Celina G. Kleer ◽  
Carol A. Lange

2009 ◽  
Vol 7 (5) ◽  
pp. 634-644 ◽  
Author(s):  
Xiaoying Zhang ◽  
Ulka Shrikhande ◽  
Bethany M. Alicie ◽  
Qing Zhou ◽  
Robert L. Geahlen

Sign in / Sign up

Export Citation Format

Share Document