Antiangiogenic Therapy of Cerebral Melanoma Metastases Results in Sustained Tumor Progression via Vessel Co-Option

2004 ◽  
Vol 10 (18) ◽  
pp. 6222-6230 ◽  
Author(s):  
William P. J. Leenders ◽  
Benno Küsters ◽  
Kiek Verrijp ◽  
Cathy Maass ◽  
Pieter Wesseling ◽  
...  
2019 ◽  
Vol 116 (7) ◽  
pp. 2662-2671 ◽  
Author(s):  
Chrysovalantis Voutouri ◽  
Nathaniel D. Kirkpatrick ◽  
Euiheon Chung ◽  
Fotios Mpekris ◽  
James W. Baish ◽  
...  

Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without—or before—angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.


Cancer Cell ◽  
2004 ◽  
Vol 5 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Mikhail V. Blagosklonny

Cancer Cell ◽  
2004 ◽  
Vol 6 (4) ◽  
pp. 425
Author(s):  
Mikhail V. Blagosklonny

2021 ◽  
Vol 12 ◽  
Author(s):  
Eva Katharina Egger ◽  
Damian J. Ralser ◽  
Kira Lindner ◽  
Florian Recker ◽  
Milka Marinova ◽  
...  

BackgroundVaginal adenocarcinomas (VAC) are most often reported after intrauterine exposition to diethylstilbestrol (DES). Rarely, VACs are reported as a malignant transformation of vaginal adenosis or endometriosis, in the context of chromosomal abnormalities or malformations of the uterus or the vagina. VACs without DES exposition have a poor prognosis and a significantly worse outcome compared to vaginal squamous cell carcinomas or DES-associated VACs.ObjectiveHere, we report the case of a primarily metastatic VAC, treated successfully with different lines of chemo-, antiangiogenic, antibody, and immunotherapy.CaseThe 49-year-old patient presented in 5/2018 with a primarily pulmonary metastatic VAC. Significant tumor reduction was seen after six cycles of carboplatin AUC5/paclitaxel 175 mg/m²/bevacizumab 15 mg/kg q3w. Bevacizumab maintenance therapy and later cisplatin mono 50 mg/m² q2w led to local and distant tumor progression. To identify a potential targeted therapy, new tumor biopsies were obtained. Immunohistochemistry revealed ERBB2 expression, and paclitaxel 80 mg/m² weekly plus trastuzumab 4 mg/m² respectively 2 mg/m² q3w was administered. Due to local and pulmonal tumor progression after 6 months and persistent ERBB2 positivity, the therapy was adjusted to trastuzumab emtansine (T-DM1) 3.6 mg/kg q3w; however, the patient remained locally progressive after three cycles of T-DM1 and additionally showed a new bone metastasis. The new tumor biopsies revealed a combined positive score (CPS) of 2 regarding PD-L1, and pembrolizumab 200 mg q3w was initiated. The bone metastasis was radiated and treated with denosumab 120 mg q4w. Extreme tumor regression followed by stable disease was maintained for 9 months. Due to a slow locoregional progress only with new inguinal lymph node and pararectal lymph node metastases, a new tumor biopsy was taken. Molecular profiling showed an ARID1A mutation, a mutational burden of 5.1 mutations per megabase, and no genfusions. Based on these findings, therapy with PD-L1 antibodies, PD-1 antibodies, gemcitabine, or dasatinib was suggested. Therefore, administration of pembrolizumab was continued and local radiation therapy was performed. This led to a decrease in local tumor manifestations and a stable systemic disease.ConclusionOur case demonstrates the diagnostic and therapeutic approach in a patient with primary metastatic vaginal adenocarcinoma. By tumorgenetic profiling, different lines of systemic therapy, namely, antiangiogenic therapy, monoclonal antibody therapy, immunotherapy, and local radiation therapy, were identified and successfully administered.


Neoplasia ◽  
2014 ◽  
Vol 16 (7) ◽  
pp. 543-561 ◽  
Author(s):  
Gregory J. Baker ◽  
Viveka Nand Yadav ◽  
Sebastien Motsch ◽  
Carl Koschmann ◽  
Anda-Alexandra Calinescu ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Trude G. Simonsen ◽  
Jon-Vidar Gaustad ◽  
Einar K. Rofstad

Abstract Background Melanoma patients with metastatic growth in the meninges have poor prognosis and few treatment options. Although treatment with BRAF inhibitors or immune checkpoint inhibitors has provided promising results, most patients with advanced melanoma are resistant to these treatments and develop severe side effects. Novel treatment strategies are needed for patients with meningeal melanoma metastases, and the potential of antiangiogenic therapy was investigated in this preclinical study. Methods Two GFP-transfected melanoma models (A-07 and D-12) differing substantially in VEGF-A expression were included in the study, and the anti-VEGF-A antibody bevacizumab was used as therapeutic agent. Meningeal metastases were initiated in BALB/c nu/nu mice by intracranial inoculation of melanoma cells, and bevacizumab treatment was given twice a week in i.p. doses of 10 mg/kg until the mice became moribund. Therapeutic effects were evaluated by determining tumor host survival time, assessing tumor growth and angiogenic activity by quantitative analyses of histological preparations, and measuring the expression of angiogenesis-related genes by quantitative PCR. Results Meningeal A-07 melanomas showed higher expression of VEGF-A than meningeal D-12 melanomas, whereas the expression of ANGPT2 and IL8, two important angiogenesis drivers in melanoma, was much higher in D-12 than in A-07 tumors. Bevacizumab treatment inhibited tumor angiogenesis and prolonged host survival in mice with A-07 tumors but not in mice with D-12 tumors. Meningeal A-07 tumors in bevacizumab-treated mice compensated for the reduced VEGF-A activity by up-regulating a large number of angiogenesis-related genes, including ANGPT2 and its receptors TIE1 and TIE2. Melanoma cells migrated from meningeal tumors into the cerebrum, where they initiated metastatic growth by vessel co-option. In the A-07 model, the density of cerebral micrometastases was higher in bevacizumab-treated than in untreated mice, either because bevacizumab treatment increased mouse survival or induced increased tumor gene expression. Conclusions The development of antiangiogenic strategies for the treatment of meningeal melanoma metastases is a challenging task because the outcome of treatment will depend on the angiogenic signature of the tumor tissue, treatment-induced alterations of the angiogenic signature, and the treatment sensitivity of metastatic lesions in other intracranial sites.


2001 ◽  
Vol 120 (5) ◽  
pp. A573-A573
Author(s):  
J SHODA ◽  
T ASANO ◽  
T KAWAMOTO ◽  
Y MATSUZAKI ◽  
N TANAKA ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 51-51
Author(s):  
Shintaro Narita ◽  
Alan I. So ◽  
Shannon Sinnemann ◽  
Ladan Fazli ◽  
Eric G. Marcusson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document