scholarly journals Improved Tumor Targeting and Decreased Normal Tissue Accumulation through Extracorporeal Affinity Adsorption in a Two-Step Pretargeting Strategy

2007 ◽  
Vol 13 (18) ◽  
pp. 5572s-5576s ◽  
Author(s):  
Linda Mårtensson ◽  
Rune Nilsson ◽  
Tomas Ohlsson ◽  
Hans-Olov Sjögren ◽  
Sven-Erik Strand ◽  
...  
2006 ◽  
Vol 33 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Sriram Shankar ◽  
Ganesan Vaidyanathan ◽  
Chien-Tsun Kuan ◽  
Darell D. Bigner ◽  
Michael R. Zalutsky

2013 ◽  
Vol 135 (13) ◽  
pp. 4978-4981 ◽  
Author(s):  
Jinbin Liu ◽  
Mengxiao Yu ◽  
Chen Zhou ◽  
Shengyang Yang ◽  
Xuhui Ning ◽  
...  

2020 ◽  
Vol 118 (1) ◽  
pp. e2016605118
Author(s):  
Alexander A. Svoronos ◽  
Donald M. Engelman

A pH-Low Insertion Peptide (pHLIP) is a pH-sensitive peptide that undergoes membrane insertion, resulting in transmembrane helix formation, on exposure to acidity at a tumor cell surface. As a result, pHLIPs preferentially accumulate within tumors and can be used for tumor-targeted imaging and drug delivery. Here we explore the determinants of pHLIP insertion, targeting, and delivery through a computational modeling approach. We generate a simple mathematical model to describe the transmembrane insertion process and then integrate it into a pharmacokinetic model, which predicts the tumor vs. normal tissue biodistribution of the most studied pHLIP, “wild-type pHLIP,” over time after a single intravenous injection. From these models, we gain insight into the various mechanisms behind pHLIP tumor targeting and delivery, as well as the various biological parameters that influence it. Furthermore, we analyze how changing the properties of pHLIP can influence the efficacy of tumor targeting and delivery, and we predict the properties for optimal pHLIP phenotypes that have superior tumor targeting and delivery capabilities compared with wild-type pHLIP.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14664-e14664
Author(s):  
Ranjit Bindra ◽  
Ranjini K Sundaram ◽  
Robert J Aiello ◽  
Dan Marshall ◽  
Patricia Bourassa ◽  
...  

e14664 Background: Poly(ADP-ribose)polymerase inhibitors (PARPi’s) are a promising new class of anti-cancer agents, but their clinical application has largely been limited to tumors with homologous recombination deficiency (HRD), such as those with BRCA1/2 mutations. One strategy to target HRD-negative tumors with PARPi’s is to combine them with chemotherapy, although clinical trials indicate that dose-limiting toxicities are a major barrier to achieving synergistic efficacy with these combinations. Methods: We sought to test the hypothesis that HRD-negative cancers can be effectively treated with tumor-targeted PARPi’s in combination with chemotherapy, using our recently developed alphalex platform. This platform allows small molecule anti-cancer agents to penetrate cell membranes only at the low pH associated with the tumor microenvironment and tumor cells, directly delivering drugs to tumors while sparing normal tissue. We tested whether alphalex PARPi-conjugates in combination with chemotherapy could selectively kill cancers independent of HRD status, using a range of in vitro and in vivo tumor models. Results: We conjugated a diverse range of structurally unique PARPi’s using the alphalex platform, and demonstrated that these molecules are delivered directly into tumor cells in a pH-dependent manner. We observed significant reductions in PARylation activity and exquisite synergy with DNA damaging agents in vitro. We then demonstrated that alphalex-PARPi conjugates in combination with both temozolomide (TMZ) and irinotecan induce significant tumor cell killing in HRD-negative tumors in vivo. Importantly, we found that our tumor-targeting approach significantly reduced normal tissue toxicity, with almost complete sparing of the bone marrow relative to TMZ alone. Conclusions: The alphalex platform enables PARPi combinations with clinically relevant chemotherapies, as a means to target HRD-negative cancers without significant bone marrow toxicity. Based on these successful proof-of-concept data, we are now performing IND-enabling studies for an alphalex PARPi conjugate (CBX-11), and we anticipate initiating a Phase I clinical trial in January 2020 in solid tumors independent of HRD status.


Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


2004 ◽  
Vol 171 (4S) ◽  
pp. 51-51
Author(s):  
Roger E. De Filippo ◽  
Hans G. Pohl ◽  
James J. Yoo ◽  
Anthony Atala

2009 ◽  
Vol 221 (03) ◽  
Author(s):  
GHS Richter ◽  
UE Hattenhorst ◽  
B Beinvogl ◽  
D Schenk ◽  
MS Staege ◽  
...  

2010 ◽  
Vol 49 (S 01) ◽  
pp. S53-S58 ◽  
Author(s):  
W. Dörr

SummaryThe curative effectivity of external or internal radiotherapy necessitates exposure of normal tissues with significant radiation doses, and hence must be associated with an accepted rate of side effects. These complications can not a priori be considered as an indication of a too aggressive therapy. Based on the time of first diagnosis, early (acute) and late (chronic) radiation sequelae in normal tissues can be distinguished. Early reactions per definition occur within 90 days after onset of the radiation exposure. They are based on impairment of cell production in turnover tissues, which in face of ongoing cell loss results in hypoplasia and eventually a complete loss of functional cells. The latent time is largely independent of dose and is defined by tissue biology (turnover time). Usually, complete healing of early reactions is observed. Late radiation effects can occur after symptom-free latent times of months to many years, with an inverse dependence of latency on dose. Late normal tissue changes are progressive and usually irreversible. They are based on a complex interaction of damage to various cell populations (organ parenchyma, connective tissue, capillaries), with a contribution from macrophages. Late effects are sensitive for a reduction in dose rate (recovery effects).A number of biologically based strategies for protection of normal tissues or for amelioration of radiation effects was and still is tested in experimental systems, yet, only a small fraction of these approaches has so far been introduced into clinical studies. One advantage of most of the methods is that they may be effective even if the treatment starts way after the end of radiation exposure. For a clinical exploitation, hence, the availability of early indicators for the progression of subclinical damage in the individual patient would be desirable. Moreover, there is need to further investigate the molecular pathogenesis of normal tissue effects in more detail, in order to optimise biology based preventive strategies, as well as to identify the precise mechanisms of already tested approaches (e. g. stem cells).


Sign in / Sign up

Export Citation Format

Share Document