scholarly journals Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA

2018 ◽  
Vol 24 (8) ◽  
pp. 1872-1880 ◽  
Author(s):  
Sarah B. Goldberg ◽  
Azeet Narayan ◽  
Adam J. Kole ◽  
Roy H. Decker ◽  
Jimmitti Teysir ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3759
Author(s):  
Bryan Ulrich ◽  
Anne Pradines ◽  
Julien Mazières ◽  
Nicolas Guibert

Approximately 30% of patients with non-small-cell lung cancer (NSCLC) present with localized/non-metastatic disease and are eligible for surgical resection or other “treatment with curative intent”. Due to the high prevalence of recurrence after treatment, adjuvant therapy is standard care for most patients. The effect of adjuvant chemotherapy is, however, modest, and new tools are needed to identify candidates for adjuvant treatments (chemotherapy, immunotherapy, or targeted therapies), especially since expanded lung cancer screening programs will increase the rate of patients detected with localized NSCLC. Circulating tumor DNA (ctDNA) has shown strong potential to detect minimal residual disease (MRD) and to guide adjuvant therapies. In this manuscript, we review the technical aspects and performances of the main ctDNA sequencing platforms (TRACERx, CAPP-seq) investigated in this purpose, and discuss the potential of this approach to guide or spare adjuvant therapies after definitive treatment of NSCLC.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A18-A18
Author(s):  
Jaeyoun Choi ◽  
Myungwoo Nam ◽  
Stanislav Fridland ◽  
Jinyoung Hwang ◽  
Chan Mi Jung ◽  
...  

BackgroundTumor heterogeneity assessment may help predict response to immunotherapy. In melanoma mouse models, tumor heterogeneity impaired immune response.1 In addition, among lung cancer patients receiving immunotherapy, the high clonal neoantigen group had favorable survival and outcomes.2 Ideal methods of quantifying tumor heterogeneity are multiple biopsies or autopsy. However, these are not feasible in routine clinical practice. Circulating tumor DNA (ctDNA) is emerging as an alternative. Here, we reviewed the current state of tumor heterogeneity quantification from ctDNA. Furthermore, we propose a new tumor heterogeneity index(THI) based on our own scoring system, utilizing both ctDNA and tissue DNA.MethodsSystematic literature search on Pubmed was conducted up to August 18, 2020. A scoring system and THI were theoretically derived.ResultsTwo studies suggested their own methods of assessing tumor heterogeneity. One suggested clustering mutations with Pyclone,3 and the other suggested using the ratio of allele frequency (AF) to the maximum somatic allele frequency (MSAF).4 According to the former, the mutations in the highest cellular prevalence cluster can be defined as clonal mutations. According to the latter, the mutations with AF/MSAF<10% can be defined as subclonal mutations. To date, there have been no studies on utilizing both ctDNA and tissue DNA simultaneously to quantify tumor heterogeneity. We hypothesize that a mutation found in only one of either ctDNA or tissue DNA has a higher chance of being subclonal.We suggest a scoring system based on the previously mentioned methods to estimate the probability for a mutant allele to be subclonal. Adding up the points that correspond to the conditions results in a subclonality score (table 1). In a given ctDNA, the number of alleles with a subclonality score greater than or equal to 2 divided by the total number of alleles is defined as blood THI (bTHI) (figure 1). We can repeat the same calculation in a given tissue DNA for tissue THI (tTHI) (figure 2). Finally, we define composite THI (cTHI) as the mean of bTHI and tTHI.Abstract 18 Table 1Subclonality scoreAbstract 18 Figure 1Hypothetical distribution of all alleles found in ctDNA bTHI = the number of alleles with a subclonality score greater than or equal to 2/the total number of alleles found in ctDNA = 10/20 =50%Abstract 18 Figure 2Hypothetical distribution of all alleles found in tissue DNA tTHI= the number of alleles with a subclonality score greater than or equal to 2/the total number of alleles found in tissue DNA = 16/40 = 40% cTHI= (bTHI + tTHI)/2 = 45%ConclusionsTumor heterogeneity is becoming an important biomarker for predicting response to immunotherapy. Because autopsy and multiple biopsies are not feasible, utilizing both ctDNA and tissue DNA is the most comprehensive and practical approach. Therefore, we propose cTHI, for the first time, as a quantification measure of tumor heterogeneity.ReferencesWolf Y, Bartok O. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell 2019;179:219–235.McGranahan N, Swanton C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Ma F, Guan Y. Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. Int J Cancer 2020;146:1359–1368.Liu Z, Xie Z. Presence of allele frequency heterogeneity defined by ctDNA profiling predicts unfavorable overall survival of NSCLC. Transl Lung Cancer Res 2019;8:1045–1050.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Yu Yao ◽  
Yaping Xu ◽  
Lifeng Li ◽  
Yan Gong ◽  
...  

AbstractCirculating tumor DNA (ctDNA) provides a noninvasive approach to elucidate a patient’s genomic landscape and actionable information. Here, we design a ctDNA-based study of over 10,000 pan-cancer Chinese patients. Using parallel sequencing between plasma and white blood cells, 14% of plasma cell-free DNA samples contain clonal hematopoiesis (CH) variants, for which detectability increases with age. After eliminating CH variants, ctDNA is detected in 73.5% of plasma samples, with small cell lung cancer (91.1%) and prostate cancer (87.9%) showing the highest detectability. The landscape of putative driver genes revealed by ctDNA profiling is similar to that in a tissue-based database (R2 = 0.87, p < 0.001) but also shows some discrepancies, such as higher EGFR (44.8% versus 25.2%) and lower KRAS (6.8% versus 27.2%) frequencies in non-small cell lung cancer, and a higher TP53 frequency in hepatocellular carcinoma (53.1% versus 28.6%). Up to 41.2% of plasma samples harbor drug-sensitive alterations. These findings may be helpful for identifying therapeutic targets and combined treatment strategies.


Author(s):  
A.A. Chaudhuri ◽  
A.F. Lovejoy ◽  
J.J. Chabon ◽  
A. Newman ◽  
H. Stehr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document