Abstract 3357: Targeting cancer stem cells by an anti-DLL4 antibody inhibits epithelial-to-mesenchymal transition, delays tumor recurrence and overcomes drug resistance in breast and pancreatic cancer

Author(s):  
Wan-Ching Yen ◽  
Marcus Fischer ◽  
John Lewicki ◽  
Austin Gurney ◽  
Timothy Hoey
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Bing Dong ◽  
Shiyu Li ◽  
Shuangli Zhu ◽  
Ming Yi ◽  
Suxia Luo ◽  
...  

AbstractCancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progression. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.


2012 ◽  
Vol 173 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Seth B. Krantz ◽  
Mario A. Shields ◽  
Surabhi Dangi-Garimella ◽  
Hidayatullah G. Munshi ◽  
David J. Bentrem

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document