hippo signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 174)

H-INDEX

35
(FIVE YEARS 8)

2022 ◽  
Vol 11 ◽  
Author(s):  
Jing Xu ◽  
Xin-Yuan Liu ◽  
Qi Zhang ◽  
Hua Liu ◽  
Peng Zhang ◽  
...  

Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.


2021 ◽  
Vol 14 (712) ◽  
Author(s):  
Cecilia Rocchi ◽  
Davide Cinat ◽  
Paola Serrano Martinez ◽  
Anne L. Jellema-de Bruin ◽  
Mirjam Baanstra ◽  
...  

Author(s):  
Na Wang ◽  
Qian Yang ◽  
Jialin Wang ◽  
Rui Shi ◽  
Ming Li ◽  
...  

Sexual size dimorphism (SSD) is the difference in segments or body size between sexes prevalent in various species. Understanding the genetic architecture of SSD has remained a significant challenge owing to the complexity of growth mechanisms and the sexual influences among species. The Chinese tongue sole (Cynoglossus semilaevis), which exhibits a female-biased SSD and sex reversal from female to pseudomale, is an ideal model for exploring SSD mechanism at the molecular level. The present study aimed to integrate transcriptome and methylome analysis to unravel the genetic and epigenetic changes in female, male, and pseudomale C. semilaevis. The somatotropic and reproductive tissues (brain, liver, gonad, and muscle) transcriptomes were characterized by RNA-seq technology. Transcriptomic analysis unravelled numerous differentially expressed genes (DEGs) involved in cell growth and death-related pathways. The gonad and muscle methylomes were further employed for screening differentially methylated genes (DMGs). Relatively higher DNA methylation levels were observed in the male and pseudomale individuals. In detail, hypermethylation of the chromosome W was pronounced in the pseudomale group than in the female group. Furthermore, weighted gene co-expression network analysis showed that turquoise and brown modules positively and negatively correlated with the female-biased SSD, respectively. A combined analysis of the module genes and DMGs revealed the female-biased mRNA transcripts and hypomethylated levels in the upstream and downstream regions across the cell cycle-related genes. Moreover, the male and pseudomale-biased gene expression in the hippo signaling pathway were positively correlated with their hypermethylation levels in the gene body. These findings implied that the activation of the cell cycle and the inhibition of the hippo signaling pathway were implicated in C. semilaevis female-biased SSD. In addition, the dynamic expression pattern of the epigenetic regulatory factors, including dnmt1, dnmt3a, dnmt3b, and uhrf1, among the different sexes correspond with their distinct DNA methylation levels. Herein, we provide valuable clues for understanding female-biased SSD in C. semilaevis.


2021 ◽  
Author(s):  
XuJie Duan ◽  
Hui Yang ◽  
Liang Zhang ◽  
Huiping Li ◽  
Zhiwei Zhi Sun ◽  
...  

Abstract Background Ovine pulmonary adenomatosis (OPA) is a contagious lung epithelial tumor of sheep caused by jaagsiekte sheep retrovirus (JSRV), which causes severe economic losses for the sheep industry in the world. The specific oncogenic mechanism of JSRV is not yet clarified. Methods In this study, RNA was extracted from lung tissues of 3 naturally infected OPA cases and 3 healthy individuals for transcriptome sequencing (RNA-Seq). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to confirm the sequencing data. Immunohistochemistry (IHC) and western blot (WB) were performed to confirm the signaling pathway enriched by DEGs that was activated in naturally infected OPA cases. Cell viability, wound-healing, transwell and colony formation assays were performed to assess the cell malignant transformation of sheep trophoblast cells (STCs) transformed with JSRV- env lentivirus in vitro, and then WB was performed to confirm the signaling pathway that had been validated in the lung tissues. Results A total of 366 DEGs (154 up-regulated and 212 down-regulated) were identified by RNA-Seq of lung tissues of naturally infected OPA cases and healthy individuals. GO analysis showed that 366 DEGs were significantly enriched in 178 GO terms, including 114 biological processes, 19 cellular components and 45 molecular functions. KEGG analysis showed that the DEGs mainly enriched in cell proliferation, differentiation, apoptosis and migration, such as PI3K/Akt/mTOR, MAPK and Hippo signaling pathway, and Hippo signaling pathway has never been reported in naturally infected OPA cases. qRT-PCR results of 10 DEGs which were selected randomly were consistent with RNA-Seq results. The protein expression of Hippo signaling pathway were up-regulated in naturally infected OPA lung tissues. Cell viability, wound-healing, transwell and colony formation assays confirmed that JSRV- env lentivirus caused malignant transformation of STCs and JSRV Env increased the protein expression of Hippo signaling pathway. Conclusions This research first identified the changes in the transcriptome level of naturally infected OPA lung tissues. These data confirm that the Hippo signaling pathway is involved in the mechanism of OPA, clarify the interaction between Hippo signaling pathway and JSRV Env, provide further evidence for the tumorigenic mechanism of JSRV.


2021 ◽  
Author(s):  
Cong Liu ◽  
Chao Xiong ◽  
Xianzeng Wang ◽  
Ting Sun ◽  
Zhenzhen Ren ◽  
...  

Abstract The present study aimed to investigate the expression of LRP16 in the development of ESCC and the relationship between Hippo signaling pathway and LRP16. Immunohistochemistry was used to detect the expression of LRP16 in ESCC tissues. After transfection, the expression of LRP16 was detected by reverse transcription quantitative PCR (RT-qPCR) and western blot techniques. Cell counting kit (CCK-8), clone formation experiment, flow cytometry and wound healing were used to determine the proliferation, apoptosis, cell cycle and migration of ESCC cells. The changes of factors related to Hippo signaling pathway were determined via RT-qPCR and western blot experiments. The results showed that the LRP16 expression in ESCC tissues was higher than that in normal tissues. High expression of LRP16 was related to the depth of invasion, TNM stage and lymph node metastasis of ESCC. Furthermore, the knockdown of LRP16 inhibited proliferation, migration and promoted cell apoptosis and made cells arrested in G2/M phase. It also resulted in decreased expression of Yes-associated protein (YAP), and increased expression of mammalian STE20-like protein kinase (MST1/2), suggesting that LRP16 promoted the development of ESCC through Hippo signaling pathway. The results of this study suggest that LRP16 may be a carcinogenic gene of ESCC and promotes the progression of ESCC through the regulation of Hippo signaling pathway. Our study provides a new idea for the diagnosis and treatment of ESCC in the future.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Hong ◽  
Yingjie Zha ◽  
Chen Wang ◽  
Shigang Qiao ◽  
Jianzhong An

Diabetic cardiomyopathy (DCM) is the leading cause of death in diabetic patients. Folic acid has a protective effect on diabetes-induced cardiomyocyte damage. The aim of this study was to explore the effects of folic acid on cardiomyocytes cultured under high glucose and fat (HGF) conditions and type 2 diabetes mellitus (T2DM) mice, and elucidate the underlying mechanisms. Bioinformatics analysis was used to identify the potential drugs through the Drug-Gene Interaction database. H9C2 cardiomyocytes were cultured with 30 mM glucose and 500 nM palmitic acid in the presence or absence of folic acid or YAP1 inhibitor (verteporfin) or YAP1 siRNA. The cell viability and lactate dehydrogenase (LDH) release were measured using specific assay kits. Pyroptosis was detected by flow cytometry. The concentrations of IL-1β and IL-18 in the supernatants were measured by ELISA. The NLRP3, ASC and caspase-1 mRNA levels were detected by qRT-PCR and that the proteins expression of NLRP3, ASC, cleaved caspase-1 (p10), caspase-1, YAP1, p-YAP1, LATS1 and P-LATS1 were detected by Western blotting. C57BL/6 mice were fed with high fat diet (HFD) combined with streptozotocin (STZ) intraperitoneally to establish a T2DM model, folic acid or PBS treatment for 8 weeks by oral gavage, blood glucose and body weight were measured every 4 weeks, mouse heart tissue was used to detect pyroptosis and hippo signaling pathway related protein expression. We identified 427 differentially expressed genes in the cardiac tissues of high fat diet + streptozotocin mice, among the 30 most significantly DEGs, folic acid was predicted to be the most likely therapeutic drug. Folic acid alleviated HGF-induced cell damage in vitro and in vivo by decreasing activation of the Hippo pathway, as indicated by lower LDH release and increased cell viability, and decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1β, IL-18, p-YAP and p-LATS. Verteporfin or YAP1 siRNA neutralized the protective effect of folic acid by reversing YAP1-induced pyroptosis. Folic acid reduced NLRP3 inflammasome-mediated pyroptosis by down-regulating the Hippo signaling pathway, thereby effectively reducing T2DM-induced damage in H9C2 cells and animals.


Sign in / Sign up

Export Citation Format

Share Document