Abstract 4046: Estrogen receptor-α coordinates the unfolded protein response,autophagy, and reactive oxygen species generation to regulate breast cancer survival.

Author(s):  
Pamela A. Clarke ◽  
Katherine Cook ◽  
Rong Hu ◽  
Jessica L. Schwartz ◽  
Mones Abu-Asab ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-19-SCI-19
Author(s):  
Randal J. Kaufman

Abstract Abstract SCI-19 Factor VIII is the protein deficient in the × chromosome-linked bleeding disorder hemophilia A. Previous studies demonstrated that FVIII expression in mammalian cells is limited due to protein misfolding of the newly synthesized polypeptide in the lumen of the endoplasmic reticulum (ER). Although oxidative stress can disrupt protein folding, how protein misfolding and oxidative stress impact each other has not been explored. We have analyzed expression of FVIII to elucidate the relationship between protein misfolding and oxidative stress. Accumulation of misfolded FVIII in the lumen of the ER activates the unfolded protein response (UPR), causes oxidative stress, and induces apoptosis in vitro and in vivo in mice. Strikingly, antioxidant treatment reduces UPR activation, oxidative stress, and apoptosis, and increases FVIII secretion in vitro and in vivo. The findings indicate that reactive oxygen species are a signal generated by misfolded protein in the ER that cause UPR activation and cell death. Genetic or chemical intervention to reduce reactive oxygen species improves protein folding and cell survival and may provide an avenue to treat and/or prevent diseases of protein misfolding. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 69 (14) ◽  
pp. 3333-3345 ◽  
Author(s):  
Rengin Ozgur ◽  
Baris Uzilday ◽  
Yuji Iwata ◽  
Nozomu Koizumi ◽  
Ismail Turkan

Nanomedicine ◽  
2021 ◽  
Author(s):  
Muktashree Saha ◽  
Anil P  Bidkar ◽  
Siddhartha S  Ghosh

Aim: The primary aim of this study was to develop biomimetic nanocarriers for specific homologous targeting of the anticancer drugs ammonium pyrrolidine dithiocarbamate (PDTC) and doxorubicin. Methods: Membranous nanovesicles were synthesized from a breast cancer cell line (MCF7) by syringe extrusion process and were loaded with PDTC and doxorubicin. Besides their abilities for self-homing, the drug loaded nanovesicles showed anti-cell proliferative effects via the generation of reactive oxygen species. Results: The nanovesicles demonstrated efficient internalization via homologous targeting. Delivery of PDTC showed a higher killing effect for homologous cell targeting than other cell types. Experimental results demonstrated increased antiproliferative potency of PDTC, which induced apoptosis via reactive oxygen species generation. Conclusion: The developed membrane-derived nanocarrier is an attractive biocompatible system for ex vivo targeted drug delivery.


Sign in / Sign up

Export Citation Format

Share Document