Abstract 3573: Comprehensive non-invasive tumor sequencing: High fidelity sequencing of tumor-derived circulating cell-free DNA across 300 cancer patients

Author(s):  
Stefanie A. Mortimer ◽  
Dragan Sebisanovic ◽  
Gangwu Mei ◽  
Benjamin Schiller ◽  
Lai Mun Siew ◽  
...  
2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2017 ◽  
Vol 26 (4) ◽  
pp. 395-401 ◽  
Author(s):  
Jagdeep Singh Bhangu ◽  
Hossein Taghizadeh ◽  
Tamara Braunschmid ◽  
Thomas Bachleitner-Hofmann ◽  
Christine Mannhalter

BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Wang-Yang Pu ◽  
Rong Zhang ◽  
Li Xiao ◽  
Yong-You Wu ◽  
Wei Gong ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gulfem D. Guler ◽  
Yuhong Ning ◽  
Chin-Jen Ku ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
...  

Abstract Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92–0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
María Gallardo-Gómez ◽  
Sebastian Moran ◽  
María Páez de la Cadena ◽  
Vicenta Soledad Martínez-Zorzano ◽  
Francisco Javier Rodríguez-Berrocal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document