Abstract 1378: Evasive resistance to VEGF blockade mediated by autocrine IL-6/STAT3 signaling in xenograft models of human cancer

Author(s):  
Alexander P. Adler ◽  
Alexandra Eichten ◽  
Li Zhang ◽  
Jia Su ◽  
Ella Ioffe ◽  
...  
2020 ◽  
Vol 16 (7) ◽  
pp. 958-968
Author(s):  
Yunrui Cai ◽  
Tong Chen ◽  
Huajian Zhu ◽  
Hongbin Zou

Background: The development of novel antineoplastic agents remains highly desirable. Objective: This study focuses on the design, synthesis, and antitumor evaluation of phenyl ureas bearing 5-fluoroindolin-2-one moiety. Methods: Three sets of phenylureas were designed and synthesized and their antiproliferative ability was measured against four human carcinoma cell lines (Hela, Eca-109, A549, and MCF-7) via MTT assay. In vivo anticancer activity was further evaluated in xenograft models of human breast cancer (MCF-7). Results: A total of twenty-one new compounds were synthesized and characterized by means of 1H and 13C NMR as well as HR-MS. Three sets of compounds (1a‒1c, 2a‒2c, and 3a‒3c) were initially constructed, and preliminary antiproliferative activities of these molecules were evaluated against Hela, Eca-109, A549 and MCF-7, highlighting the meta-substituted phenylureas (1a‒1c) as the most cytotoxic set. A series of meta-substituted phenylureas derivatives (1d‒1o) were then designed and synthesized for structure-activity relationship study. Most of the new compounds showed desirable cytotoxicity, among which compound 1g exhibited the most remarkable cytotoxic effects against the tested human cancer cells with IC50 values ranging from 1.47 to 6.79 μM. Further studies showed that compound 1g suppressed tumor growth in human breast cancer (MCF- 7) xenograft models without affecting the body weight of its recipients. Conclusion: In this study, twenty-one new compounds, containing the privileged structures of phenylurea and 5-fluoroindolin-2-one, were designed and synthesized. Subsequent structureactivity studies showed that 1g was the most bioactive antitumor agent among all tested compounds, hence a potentially promising lead compound once given further optimization.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 940
Author(s):  
Chi-Yu Lai ◽  
Kun-Yun Yeh ◽  
Chiu-Ya Lin ◽  
Yang-Wen Hsieh ◽  
Hsin-Hung Lai ◽  
...  

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.


2009 ◽  
Vol 124 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Nhu-An Pham ◽  
Joao M.M.M. Magalhaes ◽  
Trevor Do ◽  
Joerg Schwock ◽  
Neesha Dhani ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 621 ◽  
Author(s):  
Jeong-Hyeon Ko ◽  
Seok-Geun Lee ◽  
Woong Yang ◽  
Jae-Young Um ◽  
Gautam Sethi ◽  
...  

Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.


2020 ◽  
Author(s):  
Jérémy Béguin ◽  
Murielle Gantzer ◽  
Isabelle Farine ◽  
Johann Foloppe ◽  
Bernard Klonjkowski ◽  
...  

Abstract Oncolytic virotherapy is an emerging strategy that uses replication-competent viruses to kill tumor cells. We have previously reported the oncolytic effects of TG6002, a novel recombinant oncolytic vaccinia virus, in various preclinical human xenograft models and canine tumor explants. To assess the safety, biodistribution and shedding of TG6002 administered by the intravenous route, we conducted a study in four immune-competent healthy dogs. Three dogs each received a single intravenous injection of TG6002 at 1 x 105 PFU/kg, 1 x 106 PFU/kg or 1 x 107 PFU/kg, and one dog received three intravenous injections at 1 x 107 PFU/kg. The injections were well tolerated without any clinical, hematological or biochemical adverse events. Viral genomes were only detected in blood one hour after injection. Post mortem analyses allowed detection of viral DNA in the spleen of one dog. Viral genomes were not detected in the urine, saliva or feces of any dogs. Seven days after the injections, a dose-dependent immune response was identified. In conclusion, intravenous administration of TG6002 shows a good safety profile, a finding that supports the initiation of clinical trials in canine cancer patients as well as further development of TG6002 as a human cancer therapy.


Author(s):  
Dianyun Ren ◽  
Jingyuan Zhao ◽  
Yan Sun ◽  
Dan Li ◽  
Zibo Meng ◽  
...  

Abstract Background Recent studies have reported that Integrin alpha 2 (ITGA2) plays an essential role in tumor cell proliferation, invasion, metastasis, and angiogenesis. An abnormally expressed ITGA2 correlates with unfavorable prognoses in multiple types of cancer. However, the specific mechanism of how ITGA2 contributes to tumorigenesis remains unclear. Methods The GEPIA web tool was used to find the clinical relevance of ITGA2 in cancer, and this significance was verified using Western blotting analysis of paired patient tissues and immunohistochemistry of the pancreatic cancer tissue. Functional assays, such as the MTS assay, colony formation assay, and transwell assay, were used to determine the biological role of ITGA2 in human cancer. The relationship between ITGA2 and programmed death-ligand 1 (PD-L1) was examined using Western blot analysis, RT-qPCR assay, and immunohistochemistry. The protein-protein interaction between ITGA2 and STAT3 was detected via co-immunoprecipitation. Results Our study showed that ITGA2 was markedly overexpressed in several malignant tumor cells and clinical tissues. Blocking ITGA2 inhibited the proliferation and invasion ability of cancer cells significantly, whereas overexpressed ITGA2 increased the degree of those processes considerably. Additionally, the RNA-seq assay indicated that ITGA2 transcriptionally regulated the expression of PD-L1 in pancreatic cancer. We also demonstrated that ITGA2 interacted with STAT3 and up-regulated the phosphorylation of STAT3; this interaction might involve the mechanism of ITGA2 inducing PD-L1 expression in cancer cells. Our results suggest that ITGA2 plays a critical role in cancer cell progression and the regulation of PD-L1 by activating the STAT3 pathway. Conclusions We identified a novel mechanism by which ITGA2 plays a critical role in modulating cancer immune response by transcriptionally increasing the expression of PD-L1 in cancer cells. Thus, targeting ITGA2 is an effective method to enhance the efficacy of checkpoint immunotherapy against cancer.


Sign in / Sign up

Export Citation Format

Share Document