Abstract 3828: Pritumumab mAb binds cell surface expressed vimentin on pancreatic cancer cells and inhibits tumor growth

Author(s):  
Ivan Babic ◽  
Natsuko Nomura ◽  
Eric Glassy ◽  
Elmar Nurmemmedov ◽  
Venkata Yenugonda ◽  
...  
Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 254 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.


Pancreas ◽  
2008 ◽  
Vol 37 (4) ◽  
pp. 484
Author(s):  
G. Matters ◽  
C. McGovern ◽  
J. Harms ◽  
K. Markovic ◽  
K. Anson ◽  
...  

2015 ◽  
Vol 16 (10) ◽  
pp. 1557-1565 ◽  
Author(s):  
Randy S Haun ◽  
Charles M Quick ◽  
Eric R Siegel ◽  
Ilangovan Raju ◽  
Samuel G Mackintosh ◽  
...  

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Prakash Radhakrishnan ◽  
Paul M. Grandgenett ◽  
Ashley M. Mohr ◽  
Stephanie K. Bunt ◽  
Fang Yu ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0126686 ◽  
Author(s):  
Alisha M. Mendonsa ◽  
Madeleine C. Chalfant ◽  
Lee D. Gorden ◽  
Michael N. VanSaun

Pathobiology ◽  
1983 ◽  
Vol 51 (1) ◽  
pp. 19-28 ◽  
Author(s):  
A. Raedler ◽  
W.H. Schmiegel ◽  
E. Raedler ◽  
R. Arndt ◽  
H.-G. Thiele

2013 ◽  
Vol 41 (7) ◽  
pp. 4049-4064 ◽  
Author(s):  
Susanna Cogoi ◽  
Sonia Zorzet ◽  
Valentina Rapozzi ◽  
Imrich Géci ◽  
Erik B. Pedersen ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Wang ◽  
Ping Chen ◽  
Ruochen Dong ◽  
Scott Weir ◽  
Michael Baltezor ◽  
...  

Pancreatic cancer cell epithelial-to-mesenchymal transition (EMT) is an important contributor to cell invasion and tumor progression. Therefore, targeting EMT may be beneficial for pancreatic cancer treatment. The aim of the present study was to report on the inhibitory effect of the novel compound C150 on the EMT of pancreatic cancer cells. C150 inhibited cell proliferation in multiple pancreatic cancer cells with IC50 values of 1-2.5 μM, while in an non-cancerous pancreatic epithelial cell line hTERT-HPNE the IC50 value was >12.5 μM. C150 significantly inhibited pancreatic cancer cell migration and invasion, as demonstrated by 3-dimensional cell invasion, wound healing and Boyden chamber Transwell migration-invasion assays. Moreover, C150 treatment decreased MMP-2 gene expression in PANC-1 cells and reduced MMP-2 activity in gelatin zymography assay. In an orthotopic mouse model of pancreatic cancer, C150 significantly reduced tumor growth at the dose of 15 mg/kg by intraperitoneal injection three times per week. Furthermore, C150 enhanced protein degradation of Snail, an important EMT-promoting transcription factor, and decreased the expression of the mesenchymal marker N-cadherin, while it increased the expression of the epithelial markers zonula occludens-1 and claudin-1. The findings of the present study suggested that C150 is a novel EMT inhibitor that may be promising for inhibiting pancreatic cancer growth and metastasis.


2020 ◽  
Author(s):  
Pei-Yun Tsai ◽  
Min-Sik Lee ◽  
Unmesh Jadhav ◽  
Insia Naqvi ◽  
Shariq Madha ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify non-genetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.SignificancePancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy with no effective therapies. PDA aggressiveness partly stems from its ability to grow within a uniquely dense stroma restricting nutrient access. This study demonstrates that PDA clones that survive chronic nutrient deprivation acquire reversible non-genetic adaptations allowing them to switch between metabolic states optimal for growth under nutrient-replete or nutrient-deprived conditions. One contributing factor to this adaptation mTORC1 activation, which stabilizes glutamine synthetase (GS) necessary for glutamine generation in nutrient-deprived cancer cells. Our findings imply that although total GS levels may not be a prognostic marker for aggressive disease, GS inhibition is of high therapeutic value, as it targets specific cell clusters adapted to nutrient starvation, thus mitigating tumor growth.


Sign in / Sign up

Export Citation Format

Share Document