scholarly journals Abstract 1165: Differential expression of CD44 variants drive the progression, invasion, drug-resistance and stemness characteristics in human oral squamous cell carcinoma

Author(s):  
Tanushree Kashyap ◽  
Siddavaram Nagini ◽  
Ajay Rana ◽  
Rajakishore Mishra
Author(s):  
Paola Fernandes Pansini ◽  
Isabella Bittencourt do Valle ◽  
Thabata Coeli Dias Damasceno ◽  
Priscila Marinho de Abreu ◽  
Anna Clara Gregório Có ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1166 ◽  
Author(s):  
Xin-Hui Khoo ◽  
Ian C. Paterson ◽  
Bey-Hing Goh ◽  
Wai-Leng Lee

Drug resistance remains a severe problem in most chemotherapy regimes. Recently, it has been suggested that cancer cell-derived extracellular vesicles (EVs) could mediate drug resistance. In this study, the role of EVs in mediating the response of oral squamous cell carcinoma (OSCC) cells to cisplatin was investigated. We isolated and characterized EVs from OSCC cell lines showing differential sensitivities to cisplatin. Increased EV production was observed in both de novo (H314) and adaptive (H103/cisD2) resistant lines compared to sensitive H103 cells. The protein profiles of these EVs were then analyzed. Differences in the proteome of EVs secreted by H103 and H103/cisD2 indicated that adaptation to cisplatin treatment caused significant changes in the secreted nanovesicles. Intriguingly, both resistant H103/cisD2 and H314 cells shared a highly similar EV protein profile including downregulation of the metal ion transporter, ATP1B3, in the EVs implicating altered drug delivery. ICP-MS analysis revealed that less cisplatin accumulated in the resistant cells, but higher levels were detected in their EVs. Therefore, we inhibited EV secretion from the cells using a proton pump inhibitor and observed an increased drug sensitivity in cisplatin-resistant H314 cells. This finding suggests that control of EV secretion could be a potential strategy to enhance the efficacy of cancer treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Anelise Russo ◽  
Patrícia M. Biselli-Chicote ◽  
Rosa S. Kawasaki-Oyama ◽  
Márcia M. U. Castanhole-Nunes ◽  
José V. Maniglia ◽  
...  

Introduction. Differential expression of genes encoding cytochrome P450 (CYP) and other oxygenases enzymes involved in biotransformation mechanisms of endogenous and exogenous compounds can lead to oral tumor development. Objective. We aimed to identify the expression profile of these genes, searching for susceptibility biomarkers in oral squamous cell carcinoma. Patients and Methods. Sixteen oral squamous cell carcinoma samples were included in this study (eight tumor and eight adjacent non-tumor tissues). Gene expression quantification was performed using TaqMan Array Human CYP450 and other Oxygenases 96-well plate (Applied Biosystems) by real time qPCR. Protein quantification was performed by ELISA and IHC methods. Bioinformatics tools were used to find metabolic pathways related to the enzymes encoded by differentially expressed genes. Results. CYP27B1, CYP27A1, CYP2E1, CYP2R1, CYP2J2, CYP2U1, CYP4F12, CYP4X1, CYP4B1, PTGIS, ALOX12, and MAOB genes presented differential expression in the oral tumors. After correction by multiple tests, only the PTGIS (Prostaglandin I2 Synthase) gene presented significant differential expression (P < 0.05). The PTGIS gene and protein were reduced in oral tumors. Conclusion. PTGIS presents downexpression in oral tumors. PTGIS play an important role in the arachidonic acid metabolism. Arachidonic acid and/or metabolites are derived from this pathway, which can influence the regulation of important physiological mechanisms in tumorigenesis process.


2014 ◽  
Vol 44 (4) ◽  
pp. 1376-1384 ◽  
Author(s):  
YOSHIHIRO NAKAGAWA ◽  
HIDEKI NAKAYAMA ◽  
MASASHI NAGATA ◽  
RYOJI YOSHIDA ◽  
KENTA KAWAHARA ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoyan Wang ◽  
Hong Li ◽  
Jing Shi

Drug resistance to platinum limited therapeutic options for oral squamous cell carcinoma (OSCC). In the current study, we investigated the role of lncRNA HOMEOBOX A11 (HOXA11) antisense RNA (HOXA11-AS) in OSCC resistance to cisplatin (CDDP). We used clinical tissues and OSCC cell lines and induced CDDP resistance in OSCC cells. Gain and loss of function were performed in OSCC-resistant cells. Xenograft mice were also established. HOXA11-AS expression was increased in OSCC clinical tissues and cell lines and upregulated in CDDP-resistant cells. Upregulation of HOXA11-AS promoted proliferation in CDDP-sensitive cells and inhibited CDDP-induced cytotoxicity. In contrast, downregulation of HOXA11-AS decreased proliferation in CDDP-resistant cells and increased CDDP-induced cytotoxicity. Knockdown of HOXA11-AS inhibited the tumor growth in xenograft mice injected by CDDP. Downregulation of HOXA11-AS increased apoptosis and caspase 3 activities in CDDP-resistant OSCC cells. Bioinformatics, reporter assay, and loss and gain of function assay indicated that HOXA11-AS and miR-214-3p could negatively regulate each other. miR-214-3p was decreased in OSCC clinical tissues and cell lines. We further revealed that proto-oncogene serine/threonine-protein kinase (PIM1) was the target of miR-214-3p. PIM1 expression could be negatively regulated by miR-214-3p and positively regulated by HOXA11-AS. Inhibition of PIM1 suppressed anti-miR-214-3p-induced increase of cell proliferation and decrease of apoptosis. In summary, HOXA11-AS was identified to facilitate CDDP-resistance in OSCC and miR-214-3p/PIM1 was found to be the downstream target of HOXA11-AS. The findings highlight the importance of HOXA11-AS/miR-214-3p/PIM1 axis in the drug resistance of OSCC and provide potential targets for improving chemotherapy of OSCC.


Sign in / Sign up

Export Citation Format

Share Document