Abstract 621: Combined inhibition of checkpoint kinase 1 (CHK1) and phosphoinositide 3-kinase (PI3K) pathways induces greater replication stress and DNA damage in high-grade serous ovarian cancer (HGSOC)

Author(s):  
Tzu-Ting Huang ◽  
Jayakumar Nair ◽  
Ethan Brill ◽  
Xiaohu Zhang ◽  
Kelli Wilson ◽  
...  
2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13580-e13580
Author(s):  
Renata Duchnowska ◽  
Anna Maria Supernat ◽  
Rafał Pęksa ◽  
Marta Łukasiewicz ◽  
Tomasz Stokowy ◽  
...  

e13580 Background: BM are a rare occurrence in ovarian cancer (OC) and their molecular characteristics is virtually unknown. DNA damage repair (DDR) deficiency is prevalent in OC, and co-mutated TP53 and any DDR denotes high tumor mutation burden (TMB). We genetically characterized a unique series of high-grade serous ovarian cancer (HGSOC) patients who developed BM to identify alterations of potential clinical relevance. Methods: Whole-exome sequencing (2x150bp, SureSelectXT Library Prep Kit, Illumina’s NovaSeq platform) was performed in matched BM, primary tumors (PT) and normal tissue. DNA was extracted from FFPE samples using QIAamp DNA FFPE Tissue Kit (Qiagen, Germany). All mutations were checked with Catalogue of Somatic Mutations in Cancer (COSMIC) and Integrative Genomics Viewer (IGV). Results: Study group included 10 HGSOC patients (International Federation of Gynecology and Obstetrics classification (FIGO) II-IV, mean age at diagnosis 48 years, range 35-59). Median time from primary HGSOC diagnosis to BM was 38 months (range, 18 to 149). TP53 somatic mutations were found in both primary tumor (PT) and BM in 8 patients. The other 2 cases harbored TP53 mutations not reported in COSMIC catalogue: p.S60L and intronic TP53 mutation preceding p.I322 (IGV). In 9 cases TP53 mutations coexisted with germline or somatic DNA damage repair deficiency. Four cases contained BRCA1 mutations (all germline), and none harbored germline BRCA2 mutation. Other mutated genes included MLH1 (2 somatic, 2 germline), ATR (4 germline, 1 somatic), AMT (1 somatic), RAD50 (1 somatic), ERCC4 (1 somatic), FANCD2 (1 somatic) and RPA1 (1 germline). Three mutation signatures defined in the COSMIC database were indentified in BM: 6, 20 and 30. In 6 cases these mutations were shared in PT, and in another 4 their presence in PT could not be determined due to technical reasons. Median survival from BM was 31 months (range, 5 to 184). Conclusions: Genomic analysis of BM provides an opportunity to identify potentially clinically informative alterations. Mutational profiles in PT are generally reflected in BM. Detected genetic alterations suggest their potential sensitivity to PARP inhibitors and immunotherapy.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Mahbuba R. Subeha ◽  
Alicia A. Goyeneche ◽  
Prisca Bustamante ◽  
Michael A. Lisio ◽  
Julia V. Burnier ◽  
...  

High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction in the HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction in clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of H2AX indicated NFV-mediated DNA damage, which was associated with decreased survival and proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2α, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panagiotis A. Konstantinopoulos ◽  
Alexandre André B. A. da Costa ◽  
Doga Gulhan ◽  
Elizabeth K. Lee ◽  
Su-Chun Cheng ◽  
...  

AbstractIn a trial of patients with high grade serous ovarian cancer (HGSOC), addition of the ATR inhibitor berzosertib to gemcitabine improved progression free survival (PFS) compared to gemcitabine alone but biomarkers predictive of treatment are lacking. Here we report a candidate biomarker of response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in HGSOC ovarian cancer. Patients with replication stress (RS)-high tumors (n = 27), defined as harboring at least one genomic RS alteration related to loss of RB pathway regulation and/or oncogene-induced replication stress achieve significantly prolonged PFS (HR = 0.38, 90% CI, 0.17–0.86) on gemcitabine monotherapy compared to those with tumors without such alterations (defined as RS-low, n = 30). However, addition of berzosertib to gemcitabine benefits only patients with RS-low tumors (gemcitabine/berzosertib HR 0.34, 90% CI, 0.13–0.86) and not patients with RS-high tumors (HR 1.11, 90% CI, 0.47–2.62). Our findings support the notion that the exacerbation of RS by gemcitabine monotherapy is adequate for lethality in RS-high tumors. Conversely, for RS-low tumors addition of berzosertib-mediated ATR inhibition to gemcitabine is necessary for lethality to occur. Independent prospective validation of this biomarker is required.


2019 ◽  
Author(s):  
Elaine Sanij ◽  
Katherine M. Hannan ◽  
Shunfei Yan ◽  
Jiachen Xuan ◽  
Jessica E. Ahern ◽  
...  

AbstractHigh-grade serous ovarian cancer (HGSOC) accounts for the majority of ovarian cancer and has a dismal prognosis. PARP inhibitors (PARPi) have revolutionized disease management of patients with homologous recombination (HR) DNA repair-deficient HGSOC. However, acquired resistance to PARPi by complex mechanisms including HR restoration and stabilisation of replication forks is a major challenge in the clinic. Here, we demonstrate CX-5461, an inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress at rDNA leading to activation of DNA damage response and DNA damage involving MRE11-dependent degradation of replication forks. CX-5461 cooperates with PARPi in exacerbating DNA damage and enhances synthetic lethal interactions of PARPi with HR deficiency in HGSOC-patient-derived xenograft (PDX)in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi and destabilises replication forks irrespective of HR pathway status, overcoming two well-known mechanisms of resistance to PARPi. Importantly, CX-5461 exhibits single agent efficacy in PARPi-resistant HGSOC-PDX. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Therefore, CX-5461 is a promising therapy alone and in combination therapy with PARPi in HR-deficient HGSOC. CX-5461 is also an exciting treatment option for patients with relapsed HGSOC tumors that have poor clinical outcome.


2021 ◽  
Author(s):  
Mahbuba R Subeha ◽  
Alicia A Goyeneche ◽  
Prisca Bustamante ◽  
Michael A Lisio ◽  
Julia V Burnier ◽  
...  

High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction of HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction of clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of gama-H2AX indicated NFV-mediated DNA damage, which was associated with decreased proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2-alpha, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.


2020 ◽  
Vol 19 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Amrita Salvi ◽  
Chiraz Soumia M. Amrine ◽  
Julia R. Austin ◽  
KiAundra Kilpatrick ◽  
Angela Russo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document