Abstract B26: Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts

Author(s):  
Santi Suryani ◽  
Hernan Carol ◽  
Viktoras Frimantas ◽  
Beat Bornhauser ◽  
Chintanu Sarmah ◽  
...  
2014 ◽  
Vol 20 (17) ◽  
pp. 4520-4531 ◽  
Author(s):  
Santi Suryani ◽  
Hernan Carol ◽  
Triona Ni Chonghaile ◽  
Viktoras Frismantas ◽  
Chintanu Sarmah ◽  
...  

Blood ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 273-283 ◽  
Author(s):  
Duohui Jing ◽  
Vivek A. Bhadri ◽  
Dominik Beck ◽  
Julie A. I. Thoms ◽  
Nurul A. Yakob ◽  
...  

Key Points The glucocorticoid receptor coordinately regulates the antiapoptotic BCL2 and proapoptotic BIM genes in pediatric ALL cells in vivo. GR binding at a novel intronic region is associated with BIM transcription and dexamethasone sensitivity in pediatric ALL cells in vivo.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2057-2066 ◽  
Author(s):  
Min H. Kang ◽  
Yun Hee Kang ◽  
Barbara Szymanska ◽  
Urszula Wilczynska-Kalak ◽  
Michael A. Sheard ◽  
...  

Abstract Defects in apoptosis signaling contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), and overexpression of antiapoptotic Bcl-2 (Bcl-2 and Bcl-XL) family proteins has been observed in ALL. ABT-737 is a small-molecule BH3-mimetic that inhibits the antiapoptotic Bcl-2 family proteins. We evaluated the cytotoxicity of ABT-737 in combination with vincristine, dexamethasone, and L-asparaginase (VXL) in 7 ALL cell lines. Multilog synergistic cytotoxicity was observed in all 7 cell lines with ABT-737 plus L-asparaginase or vincristine, and in 5 of 7 cell lines with ABT-737 plus dexamethasone or VXL. In leukemia cells, but not in normal lymphocytes, ABT-737 plus L-asparaginase induced greater mitochondrial depolarization (JC-1 staining); mitochondrial cytochrome c release; activation of Bax, Bid, and caspases (immunoblotting); and eventually apoptosis (annexin V staining) than did either drug alone. In mouse xenografts derived from patients with ALL at diagnosis (ALL-7) or at relapse (ALL-19), event-free survival (EFS) was significantly enhanced with ABT-737 plus VXL relative to VXL or ABT-737 alone (P ≤ .02). Thus, ABT-737 synergistically enhanced VXL cytotoxicity in ALL cell lines via a mitochondrial death pathway and enhanced EFS in VXL-treated mice bearing ALL xenografts. Combining VXL with a BH3-mimetic warrants clinical investigation in ALL at relapse and potentially in chemotherapy-resistant ALL subgroups.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2206-2206
Author(s):  
Tamara C.A.I. Verbeek ◽  
Susan Arentsen-Peters ◽  
Patricia Garrido Castro ◽  
Sandra Pinhancos ◽  
Kirsten Vrenken ◽  
...  

Abstract MLL-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards epigenetic perturbators such as histone deacetylase (HDAC) inhibitors. Hence, HDACs represent attractive drug targets and a variety of small molecule HDAC inhibitors have been developed and evaluated for the treatment of hematological malignancies. However, most broad-spectrum inhibitors, which simultaneously target the majority of human HDAC isoforms, often induce toxicity, especially in combination with other therapeutic agents. Therefore, selective inhibition of only one or two HDAC isoforms may represent a better alternative, provided that disease-specific dependency on specific HDACs has been identified. We examined the effects of shRNA-mediated knock-down of the class II HDACs (i.e. HDAC4, HDAC5, HDAC6, HDAC7 and HDAC9) in the MLL-rearranged ALL cell lines SEM and ALL-PO. Except for HDAC9, loss of expression (both on the mRNA and protein level) of all HDACs led to strong reductions in viable cells (0.70 to 0.19-fold; p=0.02-0.0016) in both models due to apoptosis, cell cycle arrest, or a combination thereof. Next, we evaluated the in vitro efficacy of a variety of class II HDAC-specific inhibitors on a panel of MLL-rearranged ALL (n=5) using 4-day viability MTT assays. This revealed that the selective HDAC4/5 inhibitor LMK-235 was able to recapitulate the loss-of-function phenotype of HDAC4 and HDAC5. Dose response curves showed complete growth inhibition in MLL-rearranged ALL cell lines (n=5), as well as in primary MLL-rearranged infant ALL patient samples (n=4), with IC 50 values of ~100 nM and 40-100 nM, respectively. Importantly, at these concentrations, LMK-235 hardly affected whole bone marrow samples derived from healthy individuals (n=2), for which IC 50 values were ~1 µM. To further explore the potential of class II HDAC inhibitor-based therapeutic strategies, we performed a combinatorial drug screen to identify compounds that synergize with LMK-235. For this, a compound library (comprising >200 unique agents) was screened in the absence and presence of varying concentrations of LMK235 in the MLL-rearranged cell line models SEM and ALL-PO. This, and subsequent validation experiments in additional cell line models, revealed that Venetoclax (BCL2 inhibitor), Trametinib (MEK/ERK inhibitor), Ponatinib (multi-tyrosine kinase inhibitor) and Omipalisib (a PI3K/mTOR inhibitor) strongly synergized with LMK-235. Average ZIP synergy scores ranged from 10-30, with peak ZIP scores up to 40. Importantly, synergistic effects were consistent over all concentration combinations tested. The addition of 50-100 nM LMK-235 strongly reduced IC 50 values for Omipalisib, Ponatinib and Venetoclax (0.27-fold p=0.003, 0.11-fold p=0.0005, 0.75-fold p=0.0004, respectively) in both models. In preparation to assess the in vivo efficacy of LMK-235 in patient-derived xenograft (PDX) mouse models of MLL-rearranged infant ALL, pharmacokinetic/pharmacodynamic (PK/PD) analysis was performed in immunodeficient NSG mice (n=5). For this, mice were treated with 20 mg/kg of LMK-235, daily administered via intraperitoneal injections for a total of 29 days. While none of the mice showed signs of toxicity or weight loss, LMK-235 plasma levels were stably maintained at concentrations that are highly effective against MLL-rearranged ALL cells in vitro. Taken together, these data demonstrate that various class II HDAC isoforms are targetable vulnerabilities in MLL-rearranged ALL and that pharmaceutical inhibition of HDAC4/5 by LMK-235 represents an attractive therapeutic option. Moreover, high levels of synergy observed between this HDAC inhibitor and various agents belonging to drug classes already reported to be effective against MLL-rearranged ALL, warrants pre-clinical evaluation in vivo. Currently, the assessment of the in vivo efficacy of LMK-235 monotherapy in MLL-rearranged infant ALL PDX models is in progress, after which promising synergistic HDAC inhibitor-based drug combinations will be evaluated. To determine the additional therapeutic value, the efficacy of LMK-235 and promising synergistic combinations will be evaluated in the background of conventional combination chemotherapy, where PDX models will receive a mouse-adapted version of induction therapy currently applied for treatment of MLL-rearranged infant ALL patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 567-567
Author(s):  
Donia M Moujalled ◽  
Diane T Hanna ◽  
Giovanna Pomilio ◽  
Veronique Litalien ◽  
Shaun Fleming ◽  
...  

Abstract Background Precursor-B acute lymphoblastic leukemia (B-ALL) is an aggressive hematological malignancy. Relapsed disease has a poor prognosis, despite improved outcomes with tyrosine kinase inhibitors for Ph+ cases and immunotherapeutic approaches, such as blinotumomab and CAR-T cells. Targeting cell survival with novel small molecule BH3-mimetic inhibitors of BCL-2 (e.g. Souers et al Nat Med 2013, Roberts et al, NEJM 2016 and Casara et al, Oncotarget 2018), BCL-XL (Lessene et al, Nat Chem Biol, 2013) or MCL1 (Kotschy et al, Nature 2016) is an emerging therapeutic option. BCL-2 is reported to have a pro-survival role in BCR-ABL1, JAK2 fusion, ETV6-RUNX1 and MLL-r driven ALL (Brown et al., Journal Biological Chemistry 2017). BH3-mimetics targeting BCL-2 and BCL-XL has efficacy in paediatric ALL xenografts (Khaw et al., Blood 2016), while ruxolitinib combined with ABT-737 is synergistic in JAK2-mutant pre-B-ALL (Waibel et al., Cell Reports 2013). We now report that combined targeting of BCL-2 and MCL1 has broad pre-clinical efficacy in adult B-ALL samples with Ph+, Ph- and Ph-like characteristics. Methods S55746 and S63845 were obtained from Servier/Novartis, A1331852 from Guillaume Lessene (WEHI), venetoclax, daunorubicin, dexamethasone (DXM) and tyrosine kinase inhibitors (TKIs) from Selleckchem. Bliss synergy scores were determined using a checkerboard approach to evaluate combinations (previously described Bliss, Ann Appl Biol 1939). Primary ALL cells were obtained from 14 patients (4 Ph+ and 10 Ph-) providing informed consent. Ex vivo cell viability (sytox blue exclusion) at 48h was determined over a 5-log dilution range (1nM-10uM) using drugs alone or in equimolar combinations. For in vivo studies, adult B-ALL patient derived xenografts were performed in NSG; NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Results Dual BH3-mimetic targeting of BCL-2 and MCL1 was strongly synergistic (Bliss sum >1000) in SUPB15 (Ph+ BCR-ABL1), BV173 (lymphoid blast crisis BCR-ABL1), MUTZ5 (Ph-like) and MHHCALL4 (Ph-like) B-ALL cell lines. This was more effective than single BH3-mimetic combinations with DXM or TKIs (dasatinib or ruxolitinib) (Fig. A, B). In B-ALL patient samples, combined BCL-2 and MCL1 targeting lowered the LC50 by 10-1000 fold (to LC50<10nM) in 4/4 Ph+ ALL cases and 8/10 Ph- cases. Similarly, combined MCL1 and BCL-XL targeting demonstrated synergy in 3/4 Ph+ cases and 7/10 Ph- cases (to LC50<10nM), confirming remarkable anti-leukemic activity compared to BH3-mimetics alone or chemotherapy (daunorubicin) (Fig. C). BH3-mimetic combination therapy (S55746/S63845) compared favourably in Ph+ ALL cases to S55746 (figure D) or S63845 (Figure E) in combination with dasatinib. Preliminary data using patient-derived xenografts in NSG mice revealed in vivo efficacy of combined S55746 and S63845 therapy against 3 adult B-ALL cases (1 Ph+ and 2 Ph-). Reduction of established ALL in the bone marrow was observed in mice receiving combined S55746/S63845 after one week of treatment (p=<0.05) (Fig. F-H). Conclusions Dual BH3-mimetic targeting of BCL-2 and MCL1 induces synergistic killing of human B-ALL cell lines and primary ALL samples in vitro and rapid cytoreduction in vivo. Simultaneous inhibition of BCL-2 and MCL1 represents a novel and effective approach for targeting Ph+, Ph- and Ph-like B-ALL without need for additional DNA-damaging chemotherapy or kinase inhibition. Our results support the translational investigation of dual BH3-mimetic targeting of BCL-2 and MCL1 in the clinic. Figure legend: BLISS synergy scores for A. Ph+ and B. Ph-like ALL cell lines for drug combinations targeting BCL-2, MCL1, BCR-ABL, JAK1/2 and DXM. C. LC50 activity in primary ALL after 48hr of treatment with BH3 mimetics and combinations targeting BCL-2, MCL1, BCL-XL, compared to daunorubicin (LC50< 10nM red; ~ 100nM yellow; >1uM green). D. Comparison of BH3-mimetics targeting D.BCL-2 or E. MCL1 in combination with dasatinib in Ph+ vs Ph- primary B-ALL samples. Activity expressed as LC50 activity after 48h, with median values shown. Irradiated NSG mice were transplanted with 106 primary B-ALL cells. Engraftment of F. Ph+ and G-H. Ph- B-ALL cells was confirmed at 10 weeks by detection of hCD45 in PB. Mice were then treated with i) vehicle (d1-5), ii) S55746 100mg/kg days 1-5 by gavage, iii) S63845 25 mg/kg IV on days 2 and 4 or iv) S55746+S63845. Mice were euthanized on day 8 and hCD45+ from flushed femurs quantified. Disclosures Chanrion: Servier: Employment. Maragno:servier: Employment. Kraus-Berthier:servier: Employment. Lessene:servier: Research Funding. Roberts:Janssen: Research Funding; AbbVie: Research Funding; Genentech: Research Funding; Walter and Eliza Hall: Employment, Patents & Royalties: Employee of Walter and Eliza Hall Institute of Medical Research which receives milestone and royalty payments related to venetoclax. Geneste:servier: Employment. Wei:Pfizer: Honoraria, Other: Advisory committee; Celgene: Honoraria, Other: Advisory committee, Research Funding; Amgen: Honoraria, Other: Advisory committee, Research Funding; Servier: Consultancy, Honoraria, Other: Advisory committee, Research Funding; Novartis: Honoraria, Other: Advisory committee, Research Funding, Speakers Bureau; Abbvie: Honoraria, Other: Advisory board, Research Funding, Speakers Bureau.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36429 ◽  
Author(s):  
Craig T. Wallington-Beddoe ◽  
Anthony S. Don ◽  
John Hewson ◽  
Qiao Qiao ◽  
Rachael A. Papa ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 3013-3022 ◽  
Author(s):  
Petra S. Bachmann ◽  
Rocco G. Piazza ◽  
Mary E. Janes ◽  
Nicholas C. Wong ◽  
Carwyn Davies ◽  
...  

Abstract Glucocorticoids play a critical role in the therapy of lymphoid malignancies, including pediatric acute lymphoblastic leukemia (ALL), although the mechanisms underlying cellular resistance remain unclear. We report glucocorticoid resistance attributable to epigenetic silencing of the BIM gene in pediatric ALL biopsies and xenografts established in immune-deficient mice from direct patient explants as well as a therapeutic approach to reverse resistance in vivo. Glucocorticoid resistance in ALL xenografts was consistently associated with failure to up-regulate BIM expression after dexamethasone exposure despite confirmation of a functional glucocorticoid receptor. Although a comprehensive assessment of BIM CpG island methylation revealed no consistent changes, glucocorticoid resistance in xenografts and patient biopsies significantly correlated with decreased histone H3 acetylation. Moreover, the histone deacetylase inhibitor vorinostat relieved BIM repression and exerted synergistic antileukemic efficacy with dexamethasone in vitro and in vivo. These findings provide a novel therapeutic strategy to reverse glucocorticoid resistance and improve outcome for high-risk pediatric ALL.


2014 ◽  
Vol 14 (2) ◽  
pp. 364-374 ◽  
Author(s):  
Santi Suryani ◽  
Lauryn S. Bracken ◽  
Richard C. Harvey ◽  
Keith C.S. Sia ◽  
Hernan Carol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document