scholarly journals Abstract 2898: Stochastic variation in gene expression is selected during clonal evolution of spontaneous mouse mammary tumors

Author(s):  
Sara J. Felts ◽  
Xiaojia Tang ◽  
Virginia P. Van Keulen ◽  
Krishna R. Kalari ◽  
Larry R. Pease
2019 ◽  
Author(s):  
Christian Fougner ◽  
Helga Bergholtz ◽  
Raoul Kuiper ◽  
Jens Henrik Norum ◽  
Therese Sørlie

AbstractClaudin-low breast cancer is a molecular subtype associated with poor prognosis and without targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA) induced mammary tumor model yields a heterogeneous set of tumors, a subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-low tumors, nor those of human claudin-low breast tumors, have been thoroughly explored.The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine tumors.Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed recurrently, however none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of immune activation and low degree of differentiation. There was an elevated expression of the immunosuppressive genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors. Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic aberrations, but carries potentially targetable characteristics warranting further research.Author SummaryBreast cancer is comprised of several distinct disease subtypes with different etiologies, prognoses and therapeutic targets. The claudin-low breast cancer subtype is relatively poorly understood, and no specific treatment exists targeting its unique characteristics. Animal models accurately representing human disease counterparts are vital for developing novel therapeutics, but for the claudin-low breast cancer subtype, no such uniform model exists. Here, we show that exposing mice to the carcinogen DMBA and the hormone MPA causes a diverse range of mammary tumors to grow, and half of these have a gene expression pattern similar to that seen in human claudin-low breast cancer. These tumors have numerous changes in their DNA, with clear differences between each tumor, however no specific DNA aberrations clearly demarcate the claudin-low subtype. We also analyzed human breast cancers and show that human claudin-low tumors have several clear patterns in their DNA aberrations, but no specific features accurately distinguish claudin-low from non-claudin-low breast cancer. Finally, we show that both human and murine claudin-low tumors express high levels of genes associated with suppression of immune response. In sum, we highlight claudin-low breast cancer as a clinically relevant subtype with a complex etiology, and with potential unexploited therapeutic targets.


Author(s):  
P. J. Melnick ◽  
J. W. Cha ◽  
E. Samouhos

Spontaneous mammary tumors in females of a high tumor strain of C3H mice were cut into small fragments that were Implanted into the subcutaneous tissue of the back of males of the same strain, where they grew as transplantable tumors. When about Cm. In diameter daily fractional radiation was begun, applied to the tumors, the rest of the body being shielded by a lead shield. Two groups were treated with 150 and 200 r X-ray dally, of half value layer 0.6mm. copper; a third group was treated with 500 r cobalt radiation dally. The primary purpose was to examine the enzyme changes during radiation, with histochemlcal technics.


Oncogene ◽  
2004 ◽  
Vol 23 (36) ◽  
pp. 6047-6055 ◽  
Author(s):  
Vassiliki Theodorou ◽  
Mandy Boer ◽  
Britta Weigelt ◽  
Jos Jonkers ◽  
Martin van der Valk ◽  
...  

1996 ◽  
Vol 16 (7) ◽  
pp. 3765-3772 ◽  
Author(s):  
D Broccoli ◽  
L A Godley ◽  
L A Donehower ◽  
H E Varmus ◽  
T de Lange

Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.


1986 ◽  
Vol 6 (11) ◽  
pp. 4104-4108
Author(s):  
S Dandekar ◽  
S Sukumar ◽  
H Zarbl ◽  
L J Young ◽  
R D Cardiff

Genomic DNAs from dimethylbenzanthracene-induced BALB/c mouse mammary tumors arising from the transplantable hyperplastic outgrowth (HPO) line designated DI/UCD transformed NIH 3T3 cells upon transfection. Transforming activity was attributed to the presence of activated Harvey ras-1 oncogenes containing an A----T transversion at the middle adenosine nucleotide in codon 61. DNAs from untreated DI/UCD HPO cells and radiation-induced and spontaneous mammary tumors from the DI/UCD HPO line failed to transform NIH 3T3 cells. The results indicated that the mutation activation of Harvey ras-1 oncogenes was specific to dimethylbenzanthracene treatment in the mouse mammary tumor system.


Sign in / Sign up

Export Citation Format

Share Document